BACHELOR OF SCIENCE (CBCS-2018 COURSE)

S. Y. B. Sc. Sem-IV :SUMMER- 2022 SUBJECT : MATHEMATICS : COMPLEX VARIABLES

Day: Wednesday Time: 03:00 PM-06:00 PM

Date: 13-07-2022 S-18393-2022 Max. Marks: 60

 $\overline{\text{N.B.}}$

- 1) All questions are **COMPULSORY**.
- 2) Figures to the **RIGHT** indicate **FULL** marks.
- 3) Use of non-programmable **CALCULATOR** is allowed.

Q.1 Attempt **ANY TWO** of the following:

(12)

- a) Show that a necessary condition for a function w = f(z) = u(x, y) + iv(x, y) be analytic at a point z = x+iy is that at (x, y) the real and imaginary parts u and v of f(z) satisfy the Cauchy-Riemann equations $u_x = v_y$ and $u_y = -v_x$.
- **b)** Prove that if $\lim_{z \to z_0} f(z)$ exists, then it is unique.
- c) Find an analytic function whose real part is $2x-x^3+3xy^2$.

Q.2 Attempt ANY TWO of the following:

(12)

- a) Evaluate: $\int_{C} \frac{z+6}{z^2-4} dz$, where
 - i) c is the circle |z| = 1
 - ii) c is the circle |z-2|=1
 - iii) c is the circle |z+2| = 1.
- **b)** Expand the following functions in a Taylor's series about z = 0
 - i) $f(z) = \sin z$
 - ii) $g(z) = \cos z$.
- c) Obtain the expansion of $f(z) = \frac{1}{z^2 3z + 2}$ in the region 1 < |z| < 2.

Q.3 Attempt **ANY TWO** of the following:

(12)

- a) Prove that if f(z) has a simple pole at $z=z_0$ then the residue of f(z) at $z=z_0$ is $\lim_{z\to z_0} (z-z_0) f(z)$.
- **b)** Evaluate $\int_0^\infty \frac{x^2}{(x^2+1)(x^2+4)} dx$ by contour integration.
- c) If both f(z) and $\overline{f(z)}$ are analytic functions of z then prove that f(z) is constant.

Q.4 Attempt ANY THREE of the following:

(12)

- a) Prove that the sum of the residues of the function $\frac{e^z}{z^2 + a^2}$ is $\frac{\sin a}{a}$.
- b) Obtain the Laurent's series of the function

$$f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$$
 in the region $2 < |z| < 3$

- **c)** Evaluate $\lim_{z \to c^{\frac{n}{4}}} \frac{z^2}{z^4 + z^2 + 1}$.
- **d)** Evaluate $\int_C (x^2 + y^2 xyi)dz$ where C is the line segment from z = 0 to z = 1 + i.

P.T.O.

Q.5 Attempt ANY FOUR of the following:

Attempt **ANY FOUR** of the following: (12)

Evaluate
$$\lim_{z \to i} \frac{iz^3 - 1}{z + i}$$
.

- **b)** Show that a function $f(z) = \overline{z}$ is continuous everywhere but differentiable nowhere.
- Evaluate $\int_{c}^{c} \frac{z+6}{z^2-2} dz$, where c is the circle |z|=1.
- Find the zeros of $(z^4 + 8z^2 + 16) (z^2 + z + 1)$.
- Discuss the continuity of the function f(z) at z = 2i, if $f(z) = \frac{z^2 + 4}{z - 2i}$, if $z \neq 2i$ = 3 + 4i, if z = 2i.
- f) Define pole of the function with an example.
