BACHELOR OF SCIENCE (CBCS-2018 COURSE) S. Y. B. Sc. Sem-III :SUMMER- 2022

SUBJECT: MATHEMATICS: GROUP THEORY & DIFFERENTIAL

EQUATIONS

Day : Saturday
Date : 16-07-2022

S-18363-2022

Time : 03:00 PM-06:00 PM
Max. Marks : 60

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate **FULL** marks.
- 3) Use of non-programmable **CALCULATOR** is allowed.
- Q.1 Attempt any TWO of the following:

(12)

- a) Prove that in any group G.
 - i) There is an unique identity element in a group G.
 - ii) Every element of group G has an unique inverse.
- **b)** If a, b are any two elements in a group G then show that $O(a) = O(b^{-1}ab)$.
- c) Let $S = \{1, -1, i, -i\}$. Show that (S, \bullet) is an abelian group where \bullet is usual multiplication of complex numbers.
- **Q.2** Attempt any **TWO** of the following:

(12)

- a) Prove that a non-empty subset H of a group G is a subgroup of G if and only if $ab^{-1} \in H$, $\forall a, b \in H$.
- **b)** A and B are subgroups of a group G such that $A \cup B$ is also a subgroup of G. Show that $A \subseteq B$ or $B \subseteq A$.
- c) Show that the group $(Z_4 +_4)$ of residue classes modulo 4 under addition modulo 4 is cyclic. Find all its generators. Also find all the proper subgroups as well as improper subgroups.
- **Q.3** Attempt any **TWO** of the following:

(12)

- a) Show that if $f(D)y = e^{ax}V$, where V is a function of x then $\frac{1}{f(D)}(e^{ax}V) = \frac{1}{f(D+a)}V.$
- **b)** Solve: $(D^4 + 4)y = \cos 2x + \cos 4x$.
- **c)** Solve: $(D^2 1)y = xe^{3x}$.

P. T. O.

- a) Show that the substitutions $x^2 = u$ and $y^2 = v$ converts equations (px y)(py + x) 2p into Clairaut's equation and hence solve it.
- **b)** Solve: $p^3 4xyp + 8y^2 = 0$, where $p = \frac{dy}{dx}$.
- c) Solve: $\left(\frac{dy}{dx}\right)^2 5\left(\frac{dy}{dx}\right) + 6 = 0$
- **d)** Solve: $(2+p)x + p^2$, where $p = \frac{dy}{dx}$.

Q.5 Attempt any FOUR of the following:

(12)

- a) Show that intersection of two subgroups of a group is a subgroup again.
- **b)** Solve: $(D^6 + 6D^4 + 9D^2)y = 0$.
- c) Solve:

i)
$$y - px = \frac{2p}{1 + p^2}$$
.

ii)
$$y = px + p^3 + 3p^2 + 7$$
, where $p = \frac{dy}{dx}$.

- **d)** find particular integral of differential equation $(D^3 4D)y = \cos 3x$.
- e) Define: i) (
- i) Group
- ii) Abelian group.
- f) Find all the subgroups of a cyclic group of order 18.

* * * *