BACHELOR OF SCIENCE (CBCS-2018 COURSE)

F. Y. B. Sc. Sem-II :SUMMER- 2022 SUBJECT : MATHEMATICS : ANALYTICAL GEOMETRY

Day: Wednesday Date: 13-07-2022

S-18334-2022

Time: 11:00 AM-02:00 PM

Max. Marks: 60

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate **FULL** marks.

Q.1 Attempt ANY TWO of the following:

(12)

a) Let OX, OY be the original system of rectangular axes. If these axes rotated through an angle θ without changing the origin so that new system of rectangular axes is OX', OY' then prove that $x = x' \cos \theta - y' \sin \theta$ and

$$x = x'\cos\theta - y'\sin\theta$$
 as $y = x'\sin\theta + y'\cos\theta$.

- **b)** The equation of conic is $7x^2 + 8xy + y^2 + 6x + 6y 9 = 0$,
 - i) Find it's centre
 - ii) State it's nature
 - iii) Reduced the equation to standard form .
- c) Find the equation of the plane passing through the points (1, 2, -1), (-3, 1, 2) and containing the line whose direction ratios are (3, -5, 2).

Q.2 Attempt ANY TWO of the following:

(12)

- a) Prove that the general equation of first degree in x, y, z given by ax + by + cz + d = 0 where a, b, c, d are constants (not all zero) represent a plane.
- b) Find the shortest distance between the lines

$$\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$$
 and $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$.

c) Show that the two lines

$$\frac{x-1}{-1} = \frac{y-8}{7} = \frac{z-2}{2}$$
 and $\frac{x+1}{1} = \frac{y-2}{-1} = \frac{z+4}{1}$

are coplanar and find the equation of the plane containing them.

Q.3 Attempt **ANY TWO** of the following:

(12)

- a) The α, β, γ are angles made by a line with positive directions of the co-ordinate axes, then prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.
- **b)** Show that the two spheres

$$x^2 + y^2 + z^2 - 2x - 6y - 15 = 0$$
 and $5x^2 + 5y^2 + 5z^2 - 10x + 26y + 42z + 107 = 0$ touches each other and find their point of contact.

e) Find the equation of the smallest sphere passing through A (2, 2, 0) and B (2, 0, 2).

Q.4 Attempt **ANY THREE** of the following:

- Find the points in which the line $\frac{x+1}{-1} = \frac{y-12}{5} = \frac{z-7}{2}$ cuts the cone $11x^2 5y^2 + z^2 = 0$.
- b) Find the equation of right circular cylinder of radius 2 whose axis is the line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{2}$.
- c) Find the new form of the expression $x^2 2\sqrt{3}xy + y^2$ when the axes are rotated through angle 30°.
- d) Find the angle between the lines

$$x+y+2z-3=0=2x+y+z+1$$
 and $\frac{x-1}{2}=\frac{y}{1}=\frac{z-2}{-1}$.

Q.5 Attempt **ANY FOUR** of the following:

(12)

(12)

- a) A line makes angles 45° , 60° with X and Y axes. Find the angle made by the line with Z axis.
- **b)** Find direction cosines of a line whose direction ratios are 6, -2, 3.
- c) Find the equation of the plane passing through the point (2, 1, -3) and parallel to the plane x + 2y + 3z = 8.
- d) Find the equation of line joining the points (-2, 1, 3) and (3, 1, -2).
- e) Find the equation of the sphere passing through (0, 0, 0), (0, 1, -1), (-1, 2, 0) and (1, 3, 2).
- f) Define: i) Right circular cone
 - ii) Right circular cylinder.

* * * * *