BACHELOR OF SCIENCE (CBCS - 2016 COURSE) T. Y. B Sc. Sem-VI :SUMMER- 2022 SUBJECT : CHEMISTRY : ORGANIC CHEMISTRY-II

Time: 11:00 AM-02:00 PM Day: Thursday S-15052-2022 Max. Marks: 60 Date: 7/7/2022 N.B.: All questions are **COMPULSORY**. 1) Figures to the right indicate FULL marks. 2) [12] **Q.1** Attempt **ANY TWO** of the following: What is Wittig reaction? Discuss its mechanism and application. **b)** Explain the following: i) Ethylene shows λ_{max} at 171 nm whereas 1, 3-butadiene shows at 217 nm. ii) Phenol shows bathochromic shift in presence of alkali. c) How will you distinguish the following pairs by IR Spectroscopy? i) CH₃ - CH₂ - OH ii) $Ph - CH_2 - C \equiv N$ and Ph-C≡C-H **Q.2** Attempt ANY TWO of the following: [12] What is Aldol condensation? Discuss the mechanism of simple and crossed Aldol condensation. **b)** Explain the following: i) Bands in UV spectrum are very broad. ii) Ethanol can be used as solvent in UV but acetone can't be used. c) Write a note on: Shielding and deshielding of protons. Q.3 Attempt ANY TWO of the following: [12] What are carbanions? Discuss their formations and stability. b) Discuss the applications of IR spectroscopy. c) Write a note on: Chemical shift.

P.T.O.

a) MF : C₄H₈O

IR : 1715 cm⁻¹

PMR : $1.07 \delta (t, 3H)$

: 2.12δ (s, 3H)

: $2.48 \delta (q, 2H)$

b) MF : $C_9H_{11}Br$

PMR : 7.2δ (s, 15 mm)

 $: 2.4 \delta (d, 6 mm)$

: 3.5δ (m, 3 mm)

 $: 1.1 \delta (d, 9 mm)$

c) MF : C₇H₈O

IR : 3350, 1600 and 1500 cm⁻¹

PMR : 3.8δ (s, 1H) exchangeble with D₂O

: 4.3δ (s, 2H)

 $: 7.2 \delta (s, 5H)$

d) MF : C₃H₆O

IR : 1725 and 2725 cm⁻¹

PMR : 9.77δ (s, J = 2Hz, 2 mm)

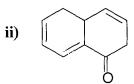
 $: 2.50 \delta (q, J = 6Hz, 4 mm)$

: 1.20δ (t, J = 6Hz, 6 mm)

Q.5 Attempt ANY FOUR of the following:

[12]

- a) What is spectroscopy? What are advantages of spectroscopic methods?
- **b)** Explain the terms:


i) Chromophores

- ii) Auxochromes
- c) Calculate fundamental modes of vibration for :

i) CO₂

- ii) NH₃
- iii) H₂S
- d) Discuss coupling constant.
- e) Calculate λ_{max} for the following compound:

i) (

f) A compound $C_6H_{10}O$ shows positive iodoform test. It shows IR peak at 1690 cm⁻¹ and UV absorption at 240 nm. Suggest the structural formula of compound.

* * *

TABLE: 1
Characteristic Infrared Absorptions of Functional Groups

	Group	Frequency Range cm ⁻¹	Intensity
Α.	Alkyl	2853 – 2962	(m-s)
	C-H (stretching)	1380 - 1385	(s)
	Isopropyl – CH (CH ₃) ₂	and $1365 - 1370$	(s)
		$\frac{1385 - 1395}{1385 - 1395}$	(m)
	7 (((((((((((((((((((
	tert-Butyl – C (CH ₃) ₃	and - 1365	(s)
В.	Alkenyl	2010 2005	(m)
	C-H (stretching)	3010 - 3095 1620 - 1680	(m)
	C=C (stretching)		(v)
	R-CH=CH ₂	985 – 1000	(s)
		and 905 – 920	(s)
	R ₂ C=CH ₂ (out-of-plane	880 – 900	(s)
	cis-RCH=CHR C-H bendings)	675 – 730	(s)
	trans-RCH=CHR	960 – 965	(s)
C.	Alkynyl		
	\equiv C-H (stretching)	3300	(s)
	-C = C (stretching)	2100 - 2260	(v)
	$C \equiv N \text{ (stretching)}$	2210 – 2260	(v)
D.	Aromatic		
	Ar-H (stretching)	3030	(v)
	Aromatic substitution type		
	(C-H out-of-plane bendings)		
	Monoasubstituted	690 - 710	(very s)
		and $730 - 770$	(very s)
	o-Disubstituted	735 – 770	(s)
	m-Disubstituted	680 - 725	(s)
	•	and $750 - 810$	(very s)
	p-Disubstituted	800 840	(very s)
E	Alcohols, Phenols, Carboxylic Acids		
	OH (alcohols, phenols, dilute solns)	3590 - 3650	(sharp v)
	OH (alcohols, phenols, hydrogen bonded)	3200 - 3550	(broad, s)
	OH (carboxylic acids, hydrogen bonded)	2500 - 3000	(broad, v)
F.	Aldehydes, Ketones, Esters and Carboxylic Acids		į.
	C = O stretch	1630 - 1780	(s)
	Aldehydes	1690 – 1740	(s)
	Ketones	1680 – 1750	(s)
	Esters	1735 – 1750	(s)
,	Carboxylic acids	1733 - 1730 $1710 - 1780$	(5)
	Amides	1630 - 1690	(s)
G.	Amies	3300 – 3500	(m)
.	N – H	2200 – 3300	(111)
H.	Nitriles	2220 2240	(m)
T Y.	ragnos	2220 - 2260	(m)

TABLE: 2

Approximate Proton Chemical Shifts in N M R

Type of Proton	Chemical Shift, Delta, PPM (δ)
1° Alkyl, RCH ₃	0.8 - 1.0
2° Alkyl, RCH ₂ R	1.2 – 1.4 O
3° Alkyl R ₂ CH	1.4 - 1.7 Ester R-C-O-CH ₂ -R 4 to 4.5.
Alkylic, $R_2C = C - CH_3$	1.6 – 1.9
Benzylic, ArCH ₃	2.2 - 2.5
Alkyl chloride, RCH2Cl	3.6 – 3.8
Alkyl bromide, RCH ₂ Br	3.4 – 3.6
Alkyl iodide, RCH ₂ I	3.1 – 3.3
Ether, ROCH ₂ R	3.3 – 3.9
Alcohol, HOCH ₂ R	3.3 - 4.0
Ketone, RCCH ₃	2.1 – 2.6
Aldehyde, RCH	9.5 – 9.6
Vinylic, $R_2 C = CH_2$	4.6 - 5.0
Vinylie, $R_2 C = CH$ \downarrow R	5.2 – 5.7
Aromatic, ArH	6.0 - 9.5
Acetylenic, RC ≡ CH	2.5 - 3.1
Alcohol hydroxyl, ROH	$0.5 - 6.0^{a}$
Carboxylic, RCOH	10 – 13 ⁿ
Phenolic, ArOH	$4.5 - 7.7^{a}$
Amino R – NH ₂	1.0 - 5.0

^a The chemical shifts of these groups vary in different solvents and with temperatur concentration.

TABLE: 3

U. V. Absorption for diene chromo		U.V. Absorption rules for Enone System		
 Parent Each extra conjugation Homoannular Exocylic double bonc Each alkyl (R) substituent directly attached to double bounded carbon 	39 nm	 Parent Each extra conjugation Homoannular Substituents Alkyl group at α Alkyl group at β Alkyl group at γ, δ 	215 nm 30 nm 39 nm 10 nm 12 nm 18 nm	