MASTER OF SCIENCE (CHEMISTRY) (CBCS - 2018 COURSE)

M.Sc. (Chemistry) Sem-III: WINTER: - 2021

SUBJECT: SPECTROSCOPIC METHODS IN STRUCTURE DETERMINATION

Day : Saturday **Date 22-01-2022**

W-20151-2021

Time: 02:00 PM-05:00 PM

Max. Marks: 60

N.B:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Answer to both the section should be written in **SEPARATE** answer book.

SECTION-I

Q.1 Explain ANY THREE of the following:

(15)

- a) DMSO –d₆ shows seven lines in ¹HNMR.
- **b)** Methylene protons of R₁R₂ CH-CH₂ -OH are diastereotopic.
- e) Piperizine shows two singlets while N-nitroso piperizine shows four triplets & one singlet.
- d) Following coupling constants are seen in the PMR of compound A.

Jab= 1.4Hz; Jax=7.3Hz & Jbx=14.6Hz

- e) CIMS is preferred method for detection of M⁺ over EIMS in mass spectrometry.
- Q.2 Distinguish between ANY THREE of the following by given spectral method.

 a)

 1H NMR

Mass

SECTION-II

Q.3 Write notes on ANY THREE of the following

(15)

- a) Karplus equation
- b) Metastable ion
- c) Two methods for simplification of complex ¹HNMR spectrum.
- d) Off resonance spectroscopy
- e) Spin decoupling
- **Q.4** Attempt **ANY THREE** of the following:

(15)

a) Assign ¹³CNMR signals to various carbons in the following compound. Give reasons and justify your answer.

- b) The sodium salt of aspartic acid in D₂O show signals in ¹HNMR as: 3.5δ (dd, J = 10 & 4H_z); 2.4δ (dd, J = 15 & 4H_z); 2.2δ (dd, 15 & 10H_z). Explain.
- c) The compound (A) when dissolved in benzene it shows $J_{AB}=3H_z$ in methanol it shows $J_{AB}=11$ Hz. Explain

d) Deduce the structure based on following data.

M.F.C₆H₁₈O; IR $\stackrel{\bullet}{.}$ 3360 & 2200cm⁻¹

¹HNMR: (CDCl₃); 1.0 (d, $J = 6H_z$, 9mm); 1.02 (d, $J = 6H_z$, 9mm);

1.82 (eight lines, $J = 6H_z$, 3mm; 2.47(d, $J = 2H_z$, 3mm);

2.82 (5, exchangeable, 3mm); $4.18(dd, J = 2 \& 6H_z, 3mm)$;

e) Give the logical fragmentation for the following ions observed in their mass spectrum (any one)

i) 1-phenyl – 2- propanone : m/z: 134, 119, 91, 43

ii) 2 - methoxy pentane : m/z : 102, 85, 59, 31

* * * *