MASTER OF SCIENCE (CHEMISTRY) (CBCS - 2018 COURSE) M.Sc. (Chemistry) Sem-III: WINTER: - 2021 ## SUBJECT: SPECTROSCOPIC METHODS IN STRUCTURE DETERMINATION **Day :** Saturday **Date 22-01-2022** W-20151-2021 Time: 02:00 PM-05:00 PM Max. Marks: 60 #### N.B: - 1) All questions are **COMPULSORY**. - 2) Figures to the right indicate FULL marks. - 3) Answer to both the section should be written in **SEPARATE** answer book. ### **SECTION-I** Q.1 Explain ANY THREE of the following: (15) - a) DMSO –d₆ shows seven lines in ¹HNMR. - **b)** Methylene protons of R₁R₂ CH-CH₂ -OH are diastereotopic. - e) Piperizine shows two singlets while N-nitroso piperizine shows four triplets & one singlet. - d) Following coupling constants are seen in the PMR of compound A. Jab= 1.4Hz; Jax=7.3Hz & Jbx=14.6Hz - e) CIMS is preferred method for detection of M⁺ over EIMS in mass spectrometry. - Q.2 Distinguish between ANY THREE of the following by given spectral method. a) 1H NMR Mass #### **SECTION-II** Q.3 Write notes on ANY THREE of the following (15) - a) Karplus equation - b) Metastable ion - c) Two methods for simplification of complex ¹HNMR spectrum. - d) Off resonance spectroscopy - e) Spin decoupling - **Q.4** Attempt **ANY THREE** of the following: (15) a) Assign ¹³CNMR signals to various carbons in the following compound. Give reasons and justify your answer. - b) The sodium salt of aspartic acid in D₂O show signals in ¹HNMR as: 3.5δ (dd, J = 10 & 4H_z); 2.4δ (dd, J = 15 & 4H_z); 2.2δ (dd, 15 & 10H_z). Explain. - c) The compound (A) when dissolved in benzene it shows $J_{AB}=3H_z$ in methanol it shows $J_{AB}=11$ Hz. Explain **d)** Deduce the structure based on following data. M.F.C₆H₁₈O; IR $\stackrel{\bullet}{.}$ 3360 & 2200cm⁻¹ ¹HNMR: (CDCl₃); 1.0 (d, $J = 6H_z$, 9mm); 1.02 (d, $J = 6H_z$, 9mm); 1.82 (eight lines, $J = 6H_z$, 3mm; 2.47(d, $J = 2H_z$, 3mm); 2.82 (5, exchangeable, 3mm); $4.18(dd, J = 2 \& 6H_z, 3mm)$; e) Give the logical fragmentation for the following ions observed in their mass spectrum (any one) i) 1-phenyl – 2- propanone : m/z: 134, 119, 91, 43 ii) 2 - methoxy pentane : m/z : 102, 85, 59, 31 * * * *