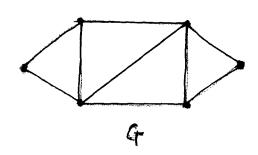
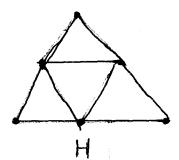
## BACHELOR OF COMPUTER APPLICATIONS (C.B.C.S.) (2014 COURSE) B.C.A. Sem-V: WINTER: 2021 SUBJECT: COMBINATORICS & GRAPH THEORY

**Day :** Thursday **Date :** 13-01-2022

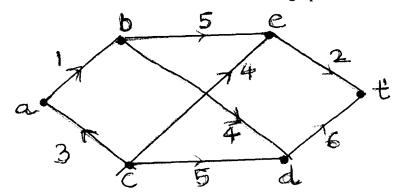
W-11053-2021

Time: 10:00 AM-01:00 PM


Max. Marks: 100


## N. B.:

- 1) Attempt ANY FOUR questions from section I and ANY TWO questions from section II.
- 2) Figures to the right indicate **FULL** marks.
- 3) Answers to both the sections should be written in **SEPARATE** answer books.
- 4) Use of non-programmable calculator is **ALLOWED**.

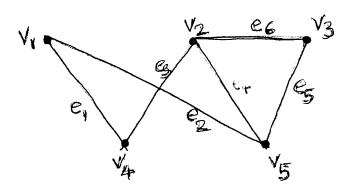

## SECTION - I

- Q. 1 A bag contains six white marbles and five red marbles. Find the number of ways four marbles can be drawn from the bag if:
  - a) They can be any color.
  - b) Two must be white and two red.
  - c) One red and three white
- Q. 2 Define isomorphism. State whether the following graphs are isomorphic or not. (15)





Q. 3 Apply Dijkstra's algorithm and determine the shortest distance from vertex (15) 'a' to each of the other vertices in the directed graph:




Q. 4 Two fair dice are thrown. Find the probability that:

(15)

- a) The total score is 10.
- b) Sum of the scores is a prime number.
- c) The product on upper most faces is either prime number or even number.

Represent the graph with an Incidence Matrix. Q. 5



Write note on Applications of trees.

(07)

(08)

- Find the number of distinct permutations that can be formed from all the (15)Q. 6 letters of given words:
  - ii) RADAR ii)
- UNUSUAL
- **MISSISSIPPI** iii)

Write short notes on **ANY THREE** of the following: Q. 7

(15)

- Coloring of Graphs a)
- Bridges of Konigsberg b)
- c) Depth – First Algorithm
- Application of Pigeonhole principle d)

## **SECTION - II**

Explain the following applications of graph: Q. 8

(10)

- Utilities problem i)
- Seating arrangement problem ii)
- (10)**b)** If A and B are any two events such that P(A) = 1/3, P(B) = 1/4 and  $P(A \cup B) = 1/2$ , then:

- Find P (A/B) and P (B/A) i)
- Are A and B independent?

Let  $A = \{1, 2, 3, 4\}$  and  $R = \{(2, 1), (2, 3), (3, 1), (3, 4), (4, 1), (4, 3)\}$  be the (20)Q. 9 relation of A.

Find the transitive closure of R using Warshall's Algorithm.

In an office there are 3 clerks assigned to process the incoming copies of a Q. 10 (20)certain form. The first clerk processes 40 % of the forms and has an error rate (probability error) of 0.04, the second clerk possesses 35 % forms with an error rate of 0.06. While the third clerk processes the rest and has the error rate of 0.03. A form chosen randomly from day's output is found to have an error.

> Find the chance that it was processed by the first clerk, second clerk and third clerk.