CDOE

MASTER OF BUSINESS ADMINISTRATION (HUMAN RESOURCE) (CBCS-2019 COURSE) M.B.A. (H.R.) SEM - III: WINTER: - 2021 SUBJECT: OPERATIONS RESEARCH

Day : Thursday **Date 17-02-2022**

W-22107-2021

Time: 10:00 AM-01:00 PM

Max. Marks: 60

N.B.:

- 1) Attempt **ANY THREE** questions from Section-I and **ANY TWO** questions from Section-II.
- 2) Figures to the right indicates FULL marks.
- 3) Answers to both the sections should be written in **SAME** answer book.
- 4) Use of Non-programmable **CALCULATOR** is allowed.
- 5) Graph paper will be provided if necessary.

SECTION-I

Q.1 Explain the applications and limitations of Operation Research in detail. (10)

Q.2 A company manufactures two types of gift items: ordinary O and deluxe D. Each gift of type D takes twice as long to produce as that of type O and the company would have time to make a maximum of 2000 gifts per day, if it produces only the ordinary items. The supply of the plastic is sufficient to produce 1500 gift items per day (both O and D). The deluxe gift item requires a fancy sheet, of which there are only 600 pieces available per day. If the company makes a profit of ₹3 and ₹5 per gift item respectively on items O and D, how many of each should be produced per day to maximize the profit?

Q.3 Solve the following transportation problem to find optimal solution. (10)

	D_1	D_2	D_3	D ₄	D_5	Available
O ₁	5	5	6	4	2	9
O_2	6	9	7	8	5	13
O ₃	5	6	4	6	3	9
Requirement	3	7	8	5	8	

Q.4 Solve the following Assignment problem to find optimal solution:

Persons

Jobs

	I	II	III	IV	V
A	1	3	2	3	6
В	2	4	3	1	5
C	5	6	3	4	6
D	3	1	4	2	2
Е	1	5	6	5	4

Q.5 Write short notes on (ANY TWO):

(10)

(10)

- a) Floats
- b) Applications of LPP
- c) Applications of simulation

P.T.O.

SECTION-II

Q.6 A project consists of activities A, B, C, D, E, F, G, H, and I with conditions (15) given in the following table:

Activity	Predecessor	Estimated time (weeks)	Activity	Predecessor	Estimated time (weeks)	
A	-	3	F	C	9	
В	-	5	G	D,E	8	
С	-	4	Н	В	7	
D	A	2	I	H,F	9	
Е	В	3	-	_	-	

Q.7 A car manufacturing company manufactures 40 cars per day. The sale of cars depends upon demand which has the following distribution:

Sales of Cars:	37	38	39	40	41	42
Probability:	0.10	0.15	0.20	0.35	0.15	0.05

The production cost and sale price of each car are \mathbb{Z} . 4 lakh and \mathbb{Z} . 5 lakh respectively. Any unsold car is to be disposed off at a loss of \mathbb{Z} . 2 lakh per car. There is a penalty of \mathbb{Z} . 1 lakh per car, if the demand is not met. Using the following random numbers, estimate total profit/loss for the company for the next ten days: 02, 97, 80, 66, 55, 96, 50, 29, 58, 51.

Q.8 a) Solve the following LP problem using the graphical method: (08)

$$Min Z = 20x_1 + 10x_2$$

 $Subject to x_1 + 2x_2 \le 40$

$$3x_1 + x_2 \ge 30$$

$$4x_1 + 3x_2 \ge 60$$

and
$$x_1, x_2 \ge 0$$

b) Explain Vogel's Approximation Method (VAM). (07)