N/I

MASTER OF SCIENCE (BIOINFORMATICS) (CBCS-2019 COURSE) M. Sc. (Bioinformatics) Sem-I: WINTER: - 2021

SUBJECT: BIOMATHEMATICS

Day: Saturday Date 29-01-2022

W-21149-2021

Time: 10:00 AM-11:30 AM

Max. Marks: 30

N.B.

- All Questions are **COMPULSORY**. 1)
- 2) Figures to the right indicate FULL marks.
- 3) Answer to both the section to be written in **SAME** answer books
- 4) Draw a labeled diagram wherever NECESSARY.

SECTION - I

Attempt any **TWO** of the following: Q.1 a)

(05)

- Find the centre and radius of the circle $x^2+y^2-2x-6y+2=0$.
- ii) Find the distance of the point (-2,3) from line 12x = 5y+13.
- iii) Find slope and y-intercept of a line $\frac{x}{2} - \frac{y}{3} = \frac{1}{4}$

Q.2 a) Attempt any TWO of the following: (06)

- i) Find acute angle between the lines x-2y+5=0 and 7x+y-10=0.
- ii) Show that the points (-2,0), (-4, -2 $\sqrt{3}$) and (-6,0) are the vertices of an equilateral triangle. Hence find its area.
- iii) If $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ then show that $\frac{dy}{dx} = 1 - y^2$.
- Show that the point (1,1) lies inside circle $x^2+y^2-4x+6y-12=0$ iv)
- Attempt any **TWO** of the following:

(04)

- If $y = e^x \frac{1}{x} + \log_e x$ then find $\frac{dy}{dx}$.
- Evaluate the limit: $\lim_{x \to 2} \frac{x^2 4}{x 5 + \frac{6}{x}}$. ii)
- Evaluate the limit: $\lim_{\theta \to \frac{\pi}{4}} \frac{2 \cos ec^2 \theta}{1 \cot \theta}$ iii)

SECTION - II

Q.3 Attempt any **TWO** of the following:

- (05)
- Show that $A = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$ is an orthogonal matrix.
- ii) Find $\frac{dy}{dx}$, if $y = \log_a x + \log_x a + (\log x)^a + \log_a a$.
- iii) Evaluate: $\lim_{x \to \infty} \left(\frac{3x+1}{3x-2} \right)$.
- Q.4 a) Attempt any ONE of the following:

(04)

i) Find the inverse of matrix using adjoint method.

$$B = \begin{bmatrix} 2 & -2 & 3 \\ 3 & -1 & 2 \\ 1 & 2 & -1 \end{bmatrix}$$

ii) Deduce the following matrix into normal form and hence find its rank

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$$

b) Attempt any TWO of the following:

(06)

- i) With the help of one example, explain the use of mathematics in Biology.
- ii) Prove that sum of two solution to homogeneous linear differential equation is again solution as it is the product of solution with any constant.
- iii) Derive equation of Michaelis Menten Kinetics.

* * * *