B. TECH. SEM -III (E & TC ENGG.) (2014 COURSE) (CBCS):

SUBJECT: NETWORK THEORY

WINTER - 2017

Day : Monday Time : 10.00 AM TO 01.00 PM

Date : 22/01/2018 Max. Marks : 60

W-2017-2061

N.B.:

1) All questions are **COMPULSORY**.

- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable **CALCULATOR** is allowed.
- 4) Draw neat and labeled diagram WHEREVER necessary.
- 5) Assume suitable data if necessary.
- Q.1 a) Two storage batteries A and B are connected in parallel for charging from a d.c. source having an open circuit voltage of 14V and internal resistance of 0.15 Ω . The open circuit voltage of A is 11V and that of B is 11.5V. Their internal resistances are 0.06Ω and 0.05Ω respectively. Calculate the initial charging currents and the source current.
 - b) Using source transformation find the voltage V for the shown circuit. [04]

OR

a) Find current (i) and voltage (V_x) in the figure given below.

b) What will be the condition of reciprocating for following circuit? [04]

P.T.O.

[06]

Q.2 a) Find out cut sets for the given graph.

b) Define f – circuits. What will be the rank of f – circuits?

- a) Compare incidence matrix and cut-set matrix.
- b) Draw the oriented graph from reduced incidecnce matrix and find number of [05] trees for the graph.

$$A = \begin{bmatrix} -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

- **Q.3** a) For the shown network switch K will be closed at t=0 with capacitor [07] uncharged. Find the value of i, $\frac{di}{dt}$, $\frac{d^2i}{dt^2}$ at $t=o^+$. Given that V=120V, $R=2k\Omega$ and $C=0.1\mu F$.
 - **b)** What is the procedure for evaluating initial conditions?

OR

a) Obtain current i(t) for $t \ge 0$ using time approach.

b) What is the need of initial condition?

[03]

[05]

[05]

[05]

[03]

[07]

Q.4 a) Derive quality factor of series RLC circuit.

[05]

- b) An RLC series circuit has $R = 1K\Omega$, L = 100mH, $C = 10\mu F$. If a voltage of [05] 100 is applied across the series combination, determine:
 - i) Resonant frequency

 - ii) Q factoriii) Half power frequencies

OR

a) Derive anti-resonance frequency.

[07]

b) A series RLC circuit has $R = 30\Omega$, L = 0.06H and $C = 0.02\mu F$. Calculate series [05] resonance frequency.

- Q.5 a) A prototype LPF is to be designed which must have $R0 = 600\Omega$ and fc = 1KHz. [05] Find the filter elements.
 - b) What is composite filter?

[05]

OR

a) What are the disadvantages of prototype filters?

[04]

- **b)** Find m derived T and π sections having a cut-off frequency of fc = 1KHz and [06] a design impedance (R0) = 600Ω . The filter must have infinite attenuation $f\infty = 1050 \text{ Hz}.$
- Q.6 a) Determine the h parameters with the following data:

[05]

with output shorted

$$V_1 = 30V$$
, $I_1 = 1.5A$, $I_2 = 1.5A$.

with input terminals open circuited ii)

$$V_1 = 15V$$
, $V_2 = 75V$, $I_2 = 2A$

b) Derive transmission parameters in terms of z parameters.

[05]

OR

a) Determine z, h and y parameter of the shown network.

[05]

b) Show that the h parameters will not exist for a two port network when $z_{22} = 0$. [05]