M. TECH.-I (CIVIL-HYDRAULIC ENGINEERING) (CBCS – 2015 COURSE): WINTER - 2017

SUBJECT: COMPUTATIONAL METHODS IN HYDRAULIC ENGINEERING

Time 11.00 AM TO 02.00 PM Day Friday Max. Marks: 60 Date 19/01/2018 W-2017-2774 N.B. All questions are COMPULSORY. 1) 2) Figures to the right indicate FULL marks. Answers to both the sections should be written in **SEPARATE** answer book. 3) 4) Use of non-programmable calculator is allowed.

SECTION - I

Q.1 a) If
$$f(z)$$
 is an analytic function of z , prove that
$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2.$$

b) Find analytic function
$$f(z) = u + iv$$
, given $u = a(1 + \cos \theta)$. (05)

OR

Prove that the necessary and sufficient conditions for the derivative of the function w = u(x, y) + iv(x, y) = f(z) to exist for all values of z in a region R, are

- i) $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ are continuous function of x and y in R.
- ii) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$
- Q.2 a) Find the bilinear transformation which maps the points z = 1, i, -1 onto the (05) points w = i, 0, -i.

b) Evaluate
$$\int_C \tan z dz$$
 where C is the circle $|z|=2$. (05)

OR

- a) Find the transformation which will map the interior of the infinite strip (05) bounded by the lines $v = 0, v = \pi$ onto the upper half of the z-plane.
- Show that $\oint_C (z+1)dz = 0$, where C is the boundary of the square whose vertices are at the points z = 0, z = 1, z = 1 + i and z = i.
- Solve the partial differential equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square with sides x = 0 = y, x = 3 = y with u = 0 on the boundary and mesh length = 1.

OR

i)
$$y^2 u_{xx} - 2y u_{xy} + u_{yy} - u_y = 8y$$
.

ii)
$$y^2 u_{xx} + u_{yy} + u_x^2 + u_y^2 + 7 = 0$$

b) Solve by Relaxation method, the equations:

$$10x - 2y - 3z = 205$$

$$-2x + 10y - 2z = 154$$

$$-2x - y + 10z = 120$$

SECTION - II

Q.4 a) Fit the exponential curve $y = ae^{bx}$ to the following data:

x:	2	4	6	8
y :	25	38	56	84

b) A solid of revolution is formed by rotating about the x-axis, the area between x-axis the lines x = 0 and x = 1 and a curve through the points with following co-ordinates.

x:	0.00	0.25	0.50	0.75	1.00
y:	1.0000	0.9896	0.9586	0.9089	0.8415

Estimate the volume of the solid formed using Simpon's 1/3rd rule.

OR

a) Fit a second degree parabola to the following data:

x:	1.0	1.5	2.0	2.5	3.0	3.5	4.0
y:	1.1	1.3	1.6	2.0	2.7	3.4	4.1

b) Given that

x:	4.0	4.2	4.4	4.6	4.8	5.0	5.2
logx:	1.3863	1.4351	1.4816	1.5261	1.5816	1.6094	1.6484

Evaluate $\int_{A}^{5.2} \log x \, dx$ by Trapezoidal rule.

Q.5 a) Two lines of regression are given by

$$5y - 8x + 17 = 0$$
 and $2y - 5x + 14 = 0$

If
$$\sigma_v^2 = 16$$
, find:

i) the mean value of x and y

ii)
$$\sigma_x^2$$

iii) the coefficient of correlation between x and y.

b) If
$$r_{12} = 0.6$$
, $r_{23} = 0.35$, and $r_{31} = 0.4$, then find $R_{3.12}$. (04)

...2

(04)

(06)

(05)

(05)

(05)

(06)

a) Calculate the first four moments about mean for the following data:

Marks	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60
No. of students	1	6	10	15	11	7

Also calculate β_1 and β_2 .

b) Find rank correlation coefficient to the following data:

(0	5
٠,	v	\sim

(05)

x:	6:	5	63	67	64	68	62	70	66	68	67	69	71
y:	6	8	66	68	65	69	66	68	65	71	67	68	70

- Q.6 a) There are three bags: first containing 1 white, 2 red, 3 green balls; second 2 white, 3 red, 1 green balls and third 3 white, 1 red, 2 green balls. Two balls are drawn from a bag chosen at random. These are found to be one white and one red. Find the probability that the balls so drawn came from the second bag.
 - b) Find mean and variance of Poisson's distribution

(05)

OR

- a) The probability that a bomb dropped from a plane will strike the target is (05)
 - $\frac{1}{5}$. If six bombs are dropped, find the probability that
 - i) exactly two will strike the target.
 - ii) atleast two will strike the target.
- **b)** A survey of 320 families with 5 children is given below:

(05)

No. of boys	5	4	5	2	1	0	Total
No. of girls	0	1	2	3	4	5	
No of families	14	56	110	88	40	12	320

Is this result consistent with hypothesis that the male and female birth are equally possible.

* * *