F.Y. B. SC. (COMPUTER SCIENCE) SEM – I (CBCS - 2016 COURSE): WINTER - 2017

SUBJECT: MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

Day Date		Monday 80/10/2017 W-2017-0	0702	Time: 11.00 A.M. TO 02.00 Max. Marks: 60	9 PM
N. B.	; 1) 2)	All questions are COMPULSOR Figures to the right indicate FULI		ζς.	
Q. 1	A)	Select the correct alternative :			(06)
	a)	Negation of statement $\forall x [p(x) \land Q(x)]$			
		,	•	$\exists x \left[\sim p(x) \land Q(x) \right]$ $\exists x \left[\sim p(x) \land \sim Q(x) \right]$	
	b)	Maximal element in $(D_{30},)$ is		_	
		i) 30 ii) 10	iii) iv)	15 1	
	c)	The value of $\lceil 3.8 \rceil = $			
		i) 3 ii) 4	iii) iv)	5 None of these	
	d)	Dual of $(x \cdot y \cdot z) + (y \cdot z) =$		_ <u>-</u>	
		i) $(x \cdot y \cdot z) \cdot (y \cdot z)$	iii)	(x+y+z)+(y+z)	
		ii) $(x+y+z)+(y\cdot z)$		$(x+y+z)\cdot (y+z)$	
	e)	How many solutions the problem $a_n - a_{n-1} + 4 a_{n-2} = 0$, $a_0 = 1$ have?			
		i) 0 ii) 2	iii) iv)	5 Infinite	
	f)	How many number of way can be 2, 3, 4?	form	3 digits number using the digits	
•		i) 27ii) 12	iii) iv)	81 None of these	
	B)	Attempt all the following:			(06)
	a)	Define Tautology.			
	b)	Prove logical equivalence $p \rightarrow q \equiv (\neg p \lor q)$			
	c)	Draw Hasse diagram for $(D_{20},)$			
	d)	Define Complemented lattice. Write the statement of Discon Hole principle			
	e)	Write the statement of Pigeon-Hole principle.			
	f)	Define linear recurrence relation.			

Q. 2 Attempt ANY THREE of the following: a) Test the validity of following argument using truth table: p → ~ q, ~ r → p, q | - r. b) Find Disjunctive Normal Form(DNF) of following boolean function: f(x, y, z) = x (y + z) c) State and prove principle of exclusion – inclusion for two sets.

Q. 3 Attempt ANY FOUR of the following: (12)

a) Give the direct proof to show that product of two odd integers is odd.

How many different arrangement of word 'MANAGEMENT'.

- **b)** Check whether the poset $(D_{15}, |)$ is lattice or not.
- c) If coin is flipped 10 times what is probability of 8 or more heads.
- **d)** Solve the recurrence relation: $a_n = -4a_{n-1} 4a_{n-2}$; $a_0 = 0$, $a_1 = 1$.
- e) Prove that $(p \wedge q) \wedge r = p \wedge (q \wedge r)$.

Q. 4 Attempt ANY TWO of the following: (12)

- a) State and prove De-Morgan's law.
- b) How many 5 cards hands can be formed from the standard 52 card deck and what is the probability of containing 3 but not 4 aces?
- c) Find the number of positive integers less than or equal to 1000 which are not divisible by 2, 3 and 7.

Q. 5 Attempt ANY TWO of the following: (12)

- a) By giving the proof of contradiction prove that $\sqrt{2}$ is irrational.
- b) Solve the Fibonacci relation $a_n = a_{n-1} + a_{n-2}$ with the initial condition $a_0 = 0$, $a_1 = 1$.
- c) Prove that if $[B, -, \vee, \wedge]$ is a boolean algebra then the complement 'a' of any element $a \in B$ is unique.

* * * * *