B. Tech. Sem - III (Chemical Engg.) 2014 COURSE) (CBCS) : WINTER - 2018

SUBJECT: CHEMICAL ENGINEERING THERMODYNAMICS - I

Day : Friday
Date : 23/11/2018

W-2018-2280

Time: 10.00 AM TO 01.00 PM

Max. Marks: 60

N. B. :

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Draw neat and labeled diagram WHEREVER necessary.
- 4) Use of non-programmable calculator is **ALLOWED**.
- 5) Assume suitable data, if necessary.
- Q.1 Write statement of first law of thermodynamics and derive following (10) expression. AU + AE + AE = O + W

$$\Delta U + \Delta E_k + \Delta E_p = Q + W$$

OR

- Q. 1 Derive following expression for steady state flow process $\Delta H + \frac{\Delta u^2}{2} + g\Delta z = Q + W_s$ (10)
- Q. 2 Write statement of second law of thermodynamics and derive following (10) expression for Carnot Engine $\eta = 1 \frac{Q_C}{Q_H}$

Q. 2 a) What is entropy? Derive following expression for entropy change of an ideal (10) gas.

$$\frac{\Delta S}{R} = \int_{T_0}^{T} \frac{C_p^{ig}}{R} \frac{dT}{T} - \ln \frac{P}{P_0}$$

Q. 3 Enumerate PV diagram with a neat sketch. (10)

OR

Q. 3 What is basic equation of state? Differentiate between ideal gas and real gas. (10)

Q. 4 Derive the following expression $\Delta H = -R \frac{d \ln P^{sat}}{d(1/T)}$ (10)

OR

- Q. 4 What is thermodynamic diagram? Enumerate Mollier diagram with neat (10) sketch.
- Q. 5 What is Carnot refrigerator? Derive the following expression $w = Coefficient \ of \ performance = \frac{T_C}{T_H T_C}$ (10)

OR

- Q.5 What are the ideal characteristics of refrigerator? Enumerate absorption (10) refrigeration.
- Q. 6 Derive the following fundamental property relationship $d(nG) = (nV)dP (nS)dT + \sum_{i} \mu_{i} dn_{i}$ (10)

OR

Q. 6 What is partial property? Derive the following expression $\sum_{i} x_{i} d\overline{M_{i}} = 0$ (10)

* * * * *