F.Y.B.SC. SEM – II (2014 Course): WINTER - 2018 SUBJECT: MATHEMATICS: INTEGRAL CALCULUS & DIFFERENTIAL EQUATIONS

Day : Thursday
Date : 25/10/2018

W-2018-0796

Time: 03.00 PM TO 05.00 PM

Max. Marks :40

N. B. :

- 1) All questions are COMPULSORY.
- 2) Figures to the right indicate FULL marks.
- Q.1 Attempt ANY TWO of the following:

(10)

- a) Define homogenous differential equation and explain the method of its general solution.
- **b)** Solve: $3\frac{dy}{dx} + \frac{2}{x+1}y = \frac{x^3}{y^2}$.
- c) Solve: $(x^2 + y^2) dx = 2 xy dy$.
- Q.2 Attempt ANY TWO of the following:

(10)

- Evaluate $\int \frac{dx}{a + b \cos x}$ if i) a > b and ii) a < b.
- Evaluate: $\int \frac{x^2+1}{x^4+1} dx$.
- c) Evaluate: $\int \frac{(x-8)}{(2x-1)(x^2+x+3)} dx$.
- Q.3 Attempt **ANY TWO** of the following:

(10)

- a) Evaluate the surface area of the solid generated by revolving the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$, about the line y = 0.
- b) Find the length of the arc of the parabola $x^2 = 4ay$ measured from the vertex to one extremity of the latus rectum.
- c) Find orthogonal trajectories of the family of $y = ae^{-2x}$.
- Q.4 Attempt **ANY FIVE** of the following:

(10)

- a) Evaluate $\int \cos e c^4 x \, dx$
- Prove that $\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} \int \tan^{n-2} x \, dx$.
- Evaluate: $\int_{0}^{\frac{\pi}{4}} 4\cos^4 x \sin^4 x dx .$
- d) Find the volume of the sphere of radius a, by integration.

(P.T.O.)

- e) Solve: $(y + yx^2) dy (2x 2xy^2) dx = 0$.
- f) Obtain the differential equation of which $xy = ae^x + be^{-x}$ is the solution where a and b being arbitrary constants.
- g) Obtain the integrating factor of the following differential equation: $(x^2y-2xy^2)dx-(x^3-3x^2y)dy=0$.

* * * * *