F.Y.B.SC. SEM – I (CBCS - 2016 Course) : WINTER - 2018

SUBJECT: MATHEMATICS: CALCULUS

Day

Saturday 27/10/2018 W-2018-0692

Time: 11.00 A.M TO 02.00 PM

Max. Marks: 60

N.B.:

Date

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.

Choose the correct alternatives of the following:

[06]

- $\lim_{x \to 0} x \tan \left(\frac{\pi}{2} x \right) = \underline{\qquad}.$ **a)** 0 **b)** 1 **c)** $\frac{1}{2}$ **d)** $\frac{1}{2}$

- ii) $1+x-\frac{x^3}{3}-\frac{x^4}{6}-\frac{x^5}{30}+\dots$ $\forall x \in R \text{ is an expansion of } _____.$ a) $e^x \cos x$ b) $\frac{1}{x}$ c) $\cos x$ d) e^x

- iii) A series $\sum_{n=1}^{\infty} \frac{n}{2^n}$ is _____.

- b) oscillatory c) convergent d) none of these
- iv) If $y = a^{mx}$ then $y_n =$ _____. a) $m^{n+1} (\log a)^n a^{mx}$ c) $m^n (\log a)^n a^{mx}$ b) $m^{n-1} (\log a)^n a^{mx}$ d) None of these

- v) A sequence $\{a_n\}$ where $a_n = 2(-1)^n \frac{3}{n}$ is _____.
 - a) convergent b) divergent c) oscillatory
- d) none of these
- vi) If $y = \frac{1}{5+7x}$ then $y_n = \frac{1}{(-1)^{n+1} n! (7)^n}$ c

 b) $(-1)^n n! (7)^{n+1}$ d
- a) $\frac{(-1)^{n+1} n! (7)^n}{(5+7x)^n}$ b) $\frac{(-1)^n n! (7)^{n+1}}{(5+7x)^n}$
- c) $\frac{(-1)^n n! (7)^n}{(5+7x)^{n+1}}$ d) $\frac{(-1)^n n! (7)^n}{(5+7x)^n}$
- B) Answer the following:

[06]

- State geometrical meaning of Lagrange's mean value theorem. i)
- If $y = \sin^3 x$ then find y_n .
- iii) Evaluate : $\lim_{x\to 0} \left| \frac{1}{r} \frac{1}{e^x 1} \right|$.
- Define oscillation of a function.
- State the comparison test.
- **vi)** If $y = 5^{7x} + e^{2x} + \frac{1}{3x + 4}$, find y_n.

- a) State and prove Rolle's mean value theorem.
- b) Verify Cauchy's mean value theorem for the functions $f(x) = \frac{1}{x^2}$ and $g(x) = \frac{1}{x}$ in [a, b], a > 0. Show that point 'C' is harmonic mean of a and b.
- c) Using Lagrange's mean value theorem prove that, $\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\left(\frac{4}{3}\right) < \frac{\pi}{4} + \frac{1}{6}.$
- **d)** Show that $\{a_n\}$ where $a_n = \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \frac{1}{(n+3)^2} + \dots + \frac{1}{(n+n)^2}$ is bounded.
- Q.3 Attempt ANY FOUR of the following:

[12]

- a) Discuss the continuity of function $f(x) = \frac{1}{1 e^{\frac{1}{x}}}$ where $x \ne 0$ and f(0) = 0.
- **b)** Show that every continuous function on closed and bounded interval attains its bounds.
- c) Evaluate: $\lim_{x\to 0} \frac{x-\log(1+x)}{x^2}$.
- d) Show that the function f defined by f(x) = |x| is continuous but not differentiable at x = 0.
- e) Verify Rolle's theorem for the function $f(x) = 2x^3 + x^2 4x 2$ on $\left[-\sqrt{2}, \sqrt{2} \right]$.
- **Q.4** Attempt **ANY TWO** of the following:

[12]

- a) Show that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1.
- **b)** Using Maclaurin's theorem, prove that $\log \sec x = \frac{x^2}{2!} + \frac{2x^4}{4!} + \frac{16x^6}{6!} + \dots$
- c) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n+1}{n^3 + 2n^2 + 5}$ by using comparison test.
- Q.5 Attempt ANY TWO of the following:

[12]

- a) State and prove Leibnitz's theorem for nth derivative of the product of two functions of x.
- **b)** If $y \sin^{-1}x$, then show that $(1 x^2) y_2 xy_1 = 0$. Hence deduce that $(1 x^2) y_{n+2} (2n+1) xy_{n+1} n^2y_n = 0$.
- c) Show that a sequence $\{S_n\}$ where $S_n = \left(1 + \frac{1}{n}\right)^n$ is monotonic and bounded.