F.Y.B.Sc. SEM – I (CBCS 2018 COURSE) : WINTER - 2018

SUBJECT: MATHEMATICS: ALGEBRA

Day Date

Tuesday 23/10/2018

W-2018-0675

Time: 11.00 A.M TO 02.00 PM

Max. Marks: 60

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable CALCULATOR is allowed

Q.1 Attempt **ANY TWO** of the following:

[12]

- a) Prove that if A is a square matrix of order n, then the matrices A and adj. A. commute and the product is the scalar matrix |A| I. i.e, A(adj A) = (adj A) A = |A| I.
- **b)** Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$.
- c) Find the non-singular matrices P and Q such that PAQ is the normal form and

find the non-singular matrices P and Q such find rank of A, where
$$A = \begin{bmatrix} 2 & 1 & 3 & -2 \\ 3 & -1 & 0 & 4 \\ 1 & 5 & 9 & 14 \end{bmatrix}$$
.

Q.2 Attempt **ANY TWO** of the following:

[12]

- a) Prove that any two non-zero integers a and b have an unique (positive) g.c.d. d = (a, b) and can be expressed in the form, d = (a, b) = ma + nb, for some $m, n \in \mathbb{Z}$.
- b) Show that the integers 1357 and 1166 are relatively prime. Find integers m and n such that, 1 = 1357m + 1166n.
- c) Solve the equation $x^4 + 1 = 0$ by using De Moivre's theorem.

Q.3 Attempt **ANY TWO** of the following:

[12]

- a) State and prove De Moivre's theorem for positive and negative integers.
- **b)** If Z_1 and Z_2 are any two complex numbers then show that :
 - i) $|z_1 z_2| = |z_1| |z_2|$
 - ii) $arg(z_1 \ z_2) = arg z_1 + arg z_2$
- c) Show that congruence relation in \mathbb{Z} is an equivalence relation.

P.T.O.

- a) Find the eigen values of the matrix $A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & -2 & 1 \\ 0 & -1 & 1 \end{bmatrix}$.
- b) Solve the following system of linear equations:

$$x + y + z = 0$$

$$2x - y - 3z = 0$$

$$3z - 5y + 4z = 0$$

$$x + 17y + 4z = 0$$

- c) Express $\cos^7\theta$ in terms of the cosines of multiple angles.
- **d)** If (a, m) = 1 = (b, m) then show that (ab, m) = 1.
- Q.5 Attempt ANY FOUR of the following:

[12]

- a) Find the value of $(1+i\sqrt{3})^{10} + (1+i\sqrt{3})^{10}$.
- **b)** Find the modulus and argument of $z = \frac{3-i}{2+i} + \frac{3+i}{2-i}$.
- **c)** If $A = \begin{bmatrix} 4 & -1 & 3 \\ 0 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$, find A^{-1} .
- d) Prove that if $a \mid b$ and $c \mid d$ then $ac \mid bd$.
- e) Explain how to find the solution of homogenous system of linear equations of the form AX = 0.
- f) Define: i) rank of a matrix.
 - ii) congruence modulo n.

* * *