F.Y. B. SC. (Computer Science) SEM – I (CBCS - 2016 COURSE) : WINTER - 2018

SUBJECT: MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

Day Date	:	Monday 15/10/2018		W-20	18-0	08	May May	Time: 11.00 AM 10 02.00 PM Max. Marks: 60	
N.B.	: 1) 2)								
Q.1	A) i)	Choose the correct allernative The negation of $p \leftrightarrow q$ is						(06)	
		a) c)	$p \leftrightarrow \sim q$ $(p \leftrightarrow \sim q) \land q$	(q↔~ p)	t	o) l)	$ \begin{array}{ll} \sim & p \leftrightarrow \sim q \\ q \leftrightarrow \sim & p \end{array} $		
	ii)	If x, y are elements of Boolean algebra then $x \oplus y$							
		a)	— — — — — — — — — — — — — — — — — — —		1)			
		c)	$\begin{array}{c} xy + xy \\ - \\ x + xy \end{array}$		ć	l)	$\overline{xy} + \overline{xy}$ $y + x\overline{y}$		
	iii)								
		a) c)	30 10			o) l)	15 1		
	iv)	The total number solutions to the recurrence relation $a_n - a_{n-1} + 4a_n - 2 = 0$, $a_0 = 1$, $a_1 = 2$ is							
		a) c)	0 2) l)	5 Infinite		
	v)	The total number of different ways to select 3 cards from a 52 cards deck is						rds deck	
		a)	1326× 10	2	b)	1326×10^3		
		c)	1355× 10	2	Ċ	l)	1355×10^3		
	vi)	The number of different solutions of the equation $x_1 + x_2 + x_3 = 20$ in non-negative integers is							
		a) c)	123 213		b) d)		32 31		
	B)	Answer the following						(06)	
	i)	Write the dual of the following statement $f(x, y, z) = x \cdot y \cdot z + \overline{x} \cdot \overline{y} \cdot \overline{z}$						·· z	
	ii)	Prepare a truth table for $[(p \rightarrow q) \land p] \rightarrow q$.							
	iii)	Find the homogenous solution for $a_n - 15a_n - 1 + 50a_n - 2 = 2x10^n$							
	iv)		State the pegion-hole principle.						
	v) vi)	Draw the Hasse diagram for $(D_{24},)$. Define the complemented lattice.							

Q.2 Attempt ANY THREE of the following:

- a) Find the disjunctive normal form (DNF) of the Boolean function f(x, y, z) = x(y+z).
- **b)** Prepare the truth tables for conditional, converse, inverse and contrapositive statements.
- c) How many different ways are there to arrange the letters in the word 'SYSTEMS'?
- **d)** Solve the recurrence relation $a_r = 7a_{r-1} 10a_{r-2}$ with initial conditions $a_0 = 4$, $a_1 = 1$.

Q.3 Attempt ANY FOUR of the following

(12)

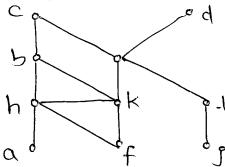
(12)

- a) Give the direct proof to show that product of two odd integers is odd integer.
- b) If the coin is flipped 10 times what is the probability of 8 or more heads?
- c) Define the terms
 - i)The lower bound of lattice L.
 - ii)The upper bound of lattice L.
- d) Prove the: $n_{P_r} = (n_{C_r}) \times (r!)$
- e) Find the six terms of the sequence defined by the following recurrence relation $a_n = a_{n-1} + 3a_{n-2}$, $a_0 = 1$, $a_1 = 2$.

Q.4 Attempt **ANY TWO** of the following:

(12)

- a) Test the validity of the following argument
 If it rains heavily and there is a high tide, then the roads get flooded. There is a high tide but the roads are not flooded. Therefore, it has not rained heavily.
- b) The diagram of a poset is shown below. Answer the following:



- i) What are the maximal elements?
- ii) What are the minimal elements?
- iii) What are the upper bounds for set $\{a, f, j\}$?
- iv) What is the l.u.b. of set $\{a, f, j,\}$?
- v) What are the lower bounds of the set $\{k, l, h\}$?
- vi) What is the g.l.b of set $\{k, l, h,\}$?
- c) Solve the recurrence relation $a_n 2a_{n-1} = 3^n$ where $a_1 = 1$

Q.5 Attempt ANY TWO of the following:

(12)

- a) Find the total number of integers between the integers 1 to 1000 which are not divisible by 2, 3 and 7.
- **b)** If 5 card hand is chosen at random from a 52 cards deck. What is the probability of obtaining a flush?
- c) If $[B, -, \vee, \wedge]$ is a Boolean algebra, then the complement a of any element $a \in B$ is unique.

* * * *