M. Sc. (Biotechnology) Sem-II (2012 Course)(Choice Based Credit System): WINTER - 2018 ## **SUBJECT: GENETIC ENGINEERING & APPLICATIONS** | Day Date | : | Wednesday 24/10/2018 | W-2018-120 | 08 | Time: 02.00 PM TO 05.00 PM Max. Marks: 60 | | |--------------|---|--|---|---|---|------| | N.B.: | 1)
2)
3)
4) | attempt ANY Answers to both Draw neat and | TWO from Q.No | o. 2, 3, 4 and writt s WHEREV | Out of the remaining questions ANY TWO from Q.No. 6, 7, 8. en in SEPARATE answer books ER necessary. | S. | | SECTION – I | | | | | | | | Q.1 | a)b)c)d)e)f) | Answer ANY FIVE
Enlist four differen
Enlist four differen
Enlist two endonuc
What are high capa
Enlist four methods
What is "biotin"? | t types of DNA p
t types of methyl
lease and two ex
city vectors? Gi
s of direct gene to | oolymerases.
ases.
onuclease en
ve examples.
ransfer. | | [10] | | Q.2 | a)
b) | Explain in detail: Difference between Different technique | • | | | [10] | | Q.3 | a)
b) | Answer the followi
Enlist the modificat
Discuss the techniq | tions in PCR tecl | | ain "hot start PCR" in detail. | [10] | | Q.4 | a)
b)
c) | Write short notes of
Cosmids
Phagmids
Tag vectors | d) | Full length cl
Cloning in ar | ONA synthesis techniques
iimal cells | [10] | | SECTION – II | | | | | | | | Q.5 | a) b) c) d) e) f) | Answer ANY FIVE of the following: What is the importance of 2µ plasmid in <i>S. cerevisiae</i> ? Name the fungi that are commonly used for cloning purpose and strong promoters used in fungi. What is the principle of pyrosequencing? Explain the principle of DNase I footprinting. Explain the technique of hybrid release translation (HRT). Enlist the factors affecting recombinant protein expression in <i>E. coli</i> | | | | | | Q.6 | a)
b) | Answer the following: Discuss different methods of mutagenesis with suitable diagrams. What are reporter genes? How do they assist in deletion analysis to identify control sequences? | | | | | | Q.7 | • | Elaborate: Different techniques of restriction mapping. Add a note on applications of restriction mapping. Merits and demerits of recombinant protein production in yeast. | | | | | | Q.8 | b)
c) | Write short notes of
Gene therapy for in
Delta endotoxin of
Use of antisense RN
Recombinant protei
Automated sequence | herited diseases <i>B.thuringiensis</i> . IA in plant geneters in sect common to the | ells | g
* | [10] |