S.Y.B.SC. (Computer Science) SEM –III (2014 COURSE) : WINTER -

2018

SUBJECT: COMPUTATIONAL ORIENTED NUMERICAL METHODS

Day :

ľ

: Tuesday : 16/10/2018

W-2018-0956

Time: 12.00 NOON TO 02.00 PM

Max. Marks: 40

N. B.:

Date

- 1) All questions are **COMPULSORY**
- 2) Figures to the right indicate **FULL** marks.
- 3) Use of non programmable **CALCULATOR** is allowed.

Q.1 Attempt any **TWO** of the following:

(10)

a) Fit a straight line by least square method of the form y = a + bx to the following data:

X		1	2	3	4	5	6
у	12	200	900	600	200	110	50

b) Find f(2.5) from the following data:

X	1	2	3	4
f(x)	2	9	28	65

c) If y(-1) = -8, y(0) = 3, y(2) = 1, y(3) = 12, find Lagrange's interpolation polynomial that takes the same values as the function y at the given points.

Q.2 Attempt any TWO of the following:

(10)

a) Given the value of x and y, find $\int_{0}^{6} y \, dx$ using Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule.

X	0	1	2	3	4	5	6
у	0.146	0.161	0.176	0.190	0.204	0.217	0.230

Given that $\frac{dy}{dx} = \frac{y-x}{y+x}$ with the initial condition y(0) = 1.

Find y(0.1) using Euler's method.

c) Using Taylor's series, find y(0.1), y(0.2) and y(0.3) given that $\frac{dy}{dx} = xy + y^2$, y(0) = 1.

Q.3 Attempt any **TWO** of the following:

(10)

a) Find the cubic polynomial which takes the following values by using Newton's forward different formula.

X	0	1	2	3
y	1	2	1	10

b) Find the real root of the equation $x^2 - 2x - 1 = 0$ lies between 1 and 3 by Regula-Falsi method (perform 4 integration).

P. T. O.

- c) Use Runge-Kutta second order formula to approximate y when x = 0.1 and x = 0.2. Given that y(0) = 1 when and $\frac{dy}{dx} = x + y$.
- Q.4 Attempt any FIVE of the following:

(10)

- a) Write any two advantages of Newton Raphson method.
- b) Write the conditions for location of root in bisection method.
- c) Prove that: $\delta = E^{1/2} E^{-1/2}$
- d) Explain critical path.
- e) Find the interval to locate the root of $x^3 x 1 = 0$.
- f) Draw a network diagram for the following activities:

Activity	A	В	C	D	Е	F	G	Н	I	J	k
Predecessor	-	A	A	A	В	С	C	C,D	E,F	G,H	I,J

g) Construct a forward difference table for the following data:

X	10	20	30		
f(x)	2.714	2.478	2.012		

* * *