M. Sc. (Biotechnology) Sem-IV (2012 Course)(Choice Based Credit System): WINTER - 2018

SUBJECT: BIOSTATISTICS

Time: 02.00 PM TO 05.00

Day:		sday	W-2018-1218	Time: 02.00 PM TO 05.00 PM						
Date:	25/10/2018		W-2010-1210	Max. Marks: 60						
N.B:										
	1)	Q. No.1 and Q. No.	o.1 and Q. No.5 are COMPULSORY. Out of the remaining attempt							
		ANY TWO questions from each section.								
	2)	Figures to the right	indicate FULL marks.							
	3)	Answer to both the sections should be written in SEPARATE answer book.								
	4)	Draw neat labeled d	iagrams WHEREVER neo	cessary.						
	5)	Use of non-program	mable electronic CALCUI	LTOR is allowed.						
	6)	Assume suitable dat	ta if necessary.							

SECTION-I

Q.1 a) Give examples of:

(02)

- i) Two continuous variables
- ii) Two nominal variables
- iii) Two ordinal variables
- b) Find mean, mode and median of plant height. Observations (plant height cm) (05) are as under:

30	30	32	31	35	30	30	29	31	32
34	33	32	33	32	32	33	32	30	34

c) Draw a histogram of data in (b) above.

(03)

Q.2 Explain the following concepts in brief: (ANY TWO)

(10)

- a) Pie chart
- b) Level of significance
- c) Scatter diagram
- d) Range
- e) Sample
- Q.3 Discuss the importance of linear and nonlinear curve fitting in biotechnology. (10) Discuss the procedures.
- Q.4 a) State the formula for compute r, b, a.

(02)

b) In each of the following cases Use the given information to compute r,b,a. Case 1: Mean(X) = 3.24 Mean (Y) = 4.56 var(X) = 4.0 var (y) = 9.0 Cov (X,Y) = 5.0 Case 2: Mean(X) = 1.23 Mean (Y)= 12.0 var(X) = 2.5 var (y) = 1.6 Cov (X,Y) = -0.2

P.T.O.

SECTION-II

Q.5		Use the following data to test the hypothesis using t-test (independent samples)						(10)		
_		•		n	mean	Variance		•		
			Sample 1	20	3.2	2.34				
			Sample 2	22	4.3	2.54				
		t value for $38df = 1.9$	96, assume	alpha =	0.05.					
Q.6		A crop performance trial was conducted with 4 variables. Soil being homogenous, 6 replications each was used, so that total plots were 24. Crop yield was the variety. Total sum of Squares was 34.5 and Varietal sum of squares was 23.2. Prepare appropriate ANOVA table and compute the relevant F-statistic. Write your inference to the extent possible on the basis of the values								
		you see in the ANO		to the e	xieni po	ssible on th	ie basis of the values			
Q.7		Discuss the distribution given below with a typical drawing of PMF, cumulative PMF.						(10)		
			Bin	omial I	Distribut	tion				
Q.8		Complete the follow	ing sentenc	es and r	ewrite.			(10)		
	a)	If Max= 40 and rang	ge is 23, valu	ue of Mi	in.					
	b)									
	c)	· · · · · · · · · · · · · · · · · · ·								
	d)	_								
	e)									
	f)									
	 g) If a variable is normally distributed than percentage of observations included the interval (mean – std. dev, mean + std. dev) are h) The most common value of level of significance used in testing of hypothesis 									
	11,	· ·	dide of leve	or or sig.		asca III tos	sing of hypomesis is			
	i)	Value of the statistic	R- square	is alway	s less tha	an or equal	to			
	j)	Conditional probability P (A/B) is defined as								