B. TECH. SEM -III (E & TC ENGG.) (2014 COURSE) (CBCS) : SUMMER - 2018

SUBJECT: NETWORK THEORY

Day : **Friday**Date : **25/05/2018**

S-2018-2269

Time: 02.30 PM TO 05.30 PM

Max. Marks: 60

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable **CALCULATOR** is allowed.
- 4) Draw neat and labeled diagram WHEREVER necessary.
- 5) Assume suitable data if necessary.
- **Q.1** a) Using nodal method find voltage V_{xy} for the shown network.

[05]

b) Find load impedance required to be connected across the terminals P - Q for the maximum power transfer in the shown network. Also find maximum power delivered to the load.

a) Write loop current equations for the shown network and determine current [05]

through 6Ω resistor.

b) Using superposition find V_0 of the shown network.

[05]

P.T.O.

Q.2 a) Consider the network shown in figure. Determine the branch current in terms [06] of loop current for the tree of your choice.

b) Define rank of all matrices.

[04]

OR

a) For the shown network find graph and indicate the number of all possible trees [05] for that graph.

b) For the shown network find out f-cutsets and for f-cutset matrix.

Q.3 a) Find out unit step response of series RL circuit using laplace transform.

[05]

[05]

b) For the shown network switch is closed at t = 0 with the zero current in the [05] inductor. Find $\frac{di}{dt}$, $\frac{d^2i}{dt^2}$ at $t = 0^+$

OR

- a) Find out unit step response of series RC circuit using classical or laplace [05] transform.
- b) For the series R C circuit $R = 45\Omega$ and C = 0.3F. Initially switch is open for long time. At t = 0 it is closed. Find expression for $V_c(t)$ and $V_R(t)$ against time.

- Q.4 a) Derive quality factor when single inductor is connected in circuit. [05]
 - b) What is the effect of f = fr, f > fr and f < fr on resonant circuit? [05]

OR

- a) Derive quality factor when single capacitor is connected in circuit. [05]
- b) Draw and explain various impedance curves for series RLC circuit. [05]
- Q.5 a) Enlist the electrical characteristics of passive filter? Explain any one in detail. [05]
 - b) Design constant K LPF T and π section filters to be terminated in 600 Ω [05] resistance. The cut-off frequency is 3KHz.

OR

- a) Derive design formulas of K-prototype low pass filter. [05]
- b) Design m derived LPF T section filter to be terminated in 620Ω resistance. Cut [05] off frequency is 1.8KHz and infinite attenuation occurs at 2KHz.
- Q.6 a) Find out condition for reciprocity and symmetry for two port network in terms [05] of short circuit admittance parameters.
 - **b)** Prove that for cascade connection of two networks. [05] $\begin{bmatrix}
 A & B \\
 C & D
 \end{bmatrix} = \begin{bmatrix}
 Aa & Ba \\
 Ca & Da
 \end{bmatrix} \begin{bmatrix}
 Ab & Bb \\
 Cb & Db
 \end{bmatrix}$

OR

- b) Find hybrid parameters in terms of Y parameters. [05]

* * * *