B.TECH. SEM -VII MECHANICAL 2014 COURSE (CBCS) : SUMMER - 2018

SUBJECT: MECHANICAL VIBRATION

Day Date	:	S-2018-2514		Time: 02.30 PM TO 05.3 Max. Marks: 60	02.30 PM TO 05.30 PM s: 60	
N. B.	: 1) 2) 3) 4)	Figures t Use non-	tions are COMPULSORY. o the right indicate FULL Marl programmable CALCULATO suitable data, if necessary.			
Q.1	a)	Explain caus	ses of vibration with its advanta	ges & limitations.	(06)	
	b)	Explain basi	c steps involve in vibration ana	lysis	(04)	
		OR				
	a)	Explain free, damped & forced vibration in brief			(06)	
	b)	Define: 1. Phase difference 2. Amplitude			(04)	
Q.2	a)	Explain ener	gy method for finding equation	of motion of vibration system	(06)	
	b)	Spring mass system had spring stiffness K kg/cm of weight of mass W kg. It has natural frequency 12 cps. An additional 2 kg weight is coupled to W & natural frequency reduces by 2 cps. Find K & W			(04)	
			OR			
	a)		ss system (K_{1} , m_{1}) has frequencing when connected in parallel, in	by F_1 . Find value of K_2 of an encreases the frequency by 30%.	(06)	
	b)	Explain trans	sverse vibration system with fig	ure	(04)	
Q.3	a)	Horizontal vibration system with 5 kg mass attach to spring with stiffness 980N/m. if coefficient of damping vibration is 0.025. Find 1. Frequency of force vibration 2. Number of cycles corresponding to 50% reduction in amplitude if initial amplitude is 5 cm. 3. Time taken to achieve 50% reduction in amplitude.			(06)	
	b)	Explain phys	sical significance of different va	lues of damping factor	(04)	
	,	OR				
	a)	Derive expression for displacement in under damped vibration system using vibration parameters.			(10)	
Q.4		15 kg attache mass centre of & What is s	ed to shaft at mid span. Span of of disc is 0.5 mm from axis of s	n sleeve bearing & disc of mass shaft between bearings is 0.5 m. shaft. Find critical speed of shaft stress in shaft will exceed 125	(10)	
			OR			
		-	following terms: Isolation 2. Force transmissib	pility 3. Motion transmissibility	(10)	
					рπо	

Q.5 Short Note: (10)

- 1. Rayleigh Method
- 2. Dunkerley's Method For critical speed of shaft carrying multiple rotors

OR

A motor running at 1500 rpm drives pump through gearing. Pump runs at 500 rpm. The motor armature has mass moment of inertia 400 kgm 2 & pump impeller has 1400 kgm 2 respectively. Motor shaft is 45 mm in diameter & 180 mm long. Pump shaft is 90 mm diameter & 450 mm in length. Find 1. Equivalent system having uniform shaft diameter 45 mm & speed of 1500 rpm. 2. Natural frequency of vibration. Neglecting inertia of gears. Take G = 84 GPa

Q.6 a) Explain FFT analyzer in details with block diagram. (06)

b) How the vibration instruments are classified? (04)

OR

Short Note: (10)

- 1. Industrial Noise control
- 2. Condenser microphone

* * * * *