B.TECH SEM – V (2007 COURSE) (PRODUCTION ENGG.) : SUMMER - 2018 ## SUBJECT: ENGINEERING METALLURGY | Day
Date | : | Monday
21/05/2018 | S-2018-2684 | Time: 10.00 AM TO 01.0 0 Max. Marks: 80 | 0 PM | | |-------------|----------------------------|---|---|---|--------|--| | N. B. | .: | | | | | | | | 1)
2)
3)
4)
5) | ANY TWO questions from Section – I and Section – II. Figures to the right indicate FULL marks. Answers to both the sections should be written in the SEPARATE answer books Draw neat and labeled diagram WHEREVER necessary. | | | books. | | | | | | SECTION - I | | | | | Q. 1 | | Write true or fa | ulse and justify your answer in | short(ANY FOUR): | (14) | | | | a) b) c) d) e) | Plain carbon ste
Martensite tran
If steel contains
temperature ap
By observing natreatment was a | nicrostructure of steel it is pos | ffusion of carbon. not desirable to use at high sible to determine which heat | | | | Q. 2 | a) | Draw the micro applications of | | and AISI 1060. Give any two | (05) | | | | b) | Write the differ | rence between optical microsc | opes with Electron Microscope. | (04) | | | | c) | Explain the role | e of macroscopic examination | test in steel industries. | (04) | | | Q. 3 | a) | Represent Normalizing, Matermperting and Ausforming on T.T.T. diagram state clearly wht is the transformation product of each treatment. (05) | | | | | | | b) | What is the har | dability? How it is measured? | ? Explain in details. | (04) | | | | c) | Explain in shor | t the following with respect to | heat treatment: | (04) | | | | | i) Curie and | critical temperature | | | | | | | ii) Quench cr | racks | | | | | | | iii) Cryogenic | heat treatment | | | | | | | iv) Secondary | Hardening | | | | | Q. 4 | a) | Differentiate be | etween flame hardening and in | duction hardening. | (05) | | | | b) | | ent types of heat treatment fur
ce used for normalizing. | naces? Draw and explain any | (04) | | | | c) | Write short not | e on Nitriding as surface hard | ening heat treatment. | (04) | | | | | | | | | | ## **SECTION - II** | | Solve ANY THREE of the following: | | | | |----------|--|---|--|--| | a) | Effect of alloying elements on cast Iron. | | | | | b) | Limitations of plain carbon steels and advantages of Alloy steels. | | | | | c) | c) Production of Nodular Cast Irons and its uses. | | | | | d) | d) Short information about Ni alloys.e) Types and applications of Bearing materials. | | | | | e) | | | | | | a) | Give the chemical composition and applications of the following materials: (ANY FIVE): | | | | | | i) Gliding Metals | | | | | | ii) Invar | | | | | | iii) Muntz Matals | | | | | | iv) Naval Brass | | | | | | v) Duralumin | | | | | | vi) Brazing Brass | | | | | b) | What are advantages and limitation of a α brasses over $\alpha + \beta$ brasses? | | | | | c) | What is LM series? Explain LM6. | | | | | a) | Draw the microstructure of following. Give the chemical composition and application of each: | | | | | | i) White Cast Iron | | | | | | ii) Pearlitic Ductile Cast Iron | | | | | | iii) Ferritic Malleable C. I. | | | | | b) | What is effect of cooling rate on cast iron phases? | (04) | | | | ` | A.G | | | | | c) | Write short note on Heat treatment of Cast Iron. | (04) | | | | c)
a) | Write short note on Heat treatment of Cast Iron. Write the differences between Austentic and Martenstic stainless steels. | (04) | | | | | | ` , | | | | | b) c) d) e) a) | b) Limitations of plain carbon steels and advantages of Alloy steels. c) Production of Nodular Cast Irons and its uses. d) Short information about Ni alloys. e) Types and applications of Bearing materials. a) Give the chemical composition and applications of the following materials: (ANY FIVE): i) Gliding Metals ii) Invar iii) Muntz Matals iv) Naval Brass v) Duralumin vi) Brazing Brass b) What are advantages and limitation of a α brasses over α + β brasses? c) What is LM series? Explain LM6. a) Draw the microstructure of following. Give the chemical composition and application of each: i) White Cast Iron ii) Pearlitic Ductile Cast Iron iii) Ferritic Malleable C. I. | | | * * * * *