B.TECH SEM – IV (2007 COURSE) (ELECTRONICS) : SUMMER - 2018

SUBJECT: DIGITAL ELECTRONICS AND LOGIC DESIGN

Day Date	;	Thursday 5-2018-2622 Time: 10.00 AM TO 01.00 PM Max. Marks: 80	[
N. B			
111. 12	· · 1)	Q. No. 1 and Q. No. 5 are COMPULSORY. Out of remaining attempt	
	,	ANY TWO questions from Section – I and Section – II.	
	2)	•	
	3)	Answers to both the sections should be written in the SEPARATE answer be	ooks.
	4)		
	5)	Assume suitable data, if necessary.	_
		SECTION – I	
Q.1	a)	Reduce the following function using K-map technique. $F(A,B,C,D) = \Sigma m(1,2,9,10,11,14,15)$	(05)
	b)	Using 2's complement perform the following:	(04)
		i) $(42)_{10}$ - $(68)_{10}$	
	٠,	Using 2's complement perform the following: i) $(42)_{10}$ - $(68)_{10}$ ii) $(25)_{10}$ - $(16)_{10}$ Write a short note on ECL logic family	(05)
	c)	Write a short note on ECL logic family	(05)
Q.2	a)	Explain the following codes and state its applications	(07)
		i) Excess-3 code	` '
	• •	ii) Gray code	(0.6)
	b)	Perform the following conversions: i) $(85.63)_{10} = (?)_2$	(06)
		ii) $(204)_{10} = (?)_8$	
		iii) $(0.122)_{10} - (?)_{16}$	
Q.3	a)	Compare Canonical and standard forms with the help of example.	(04)
	b)	Implement the following function using Quine-Mcluskey method. $F(A,B,C,D) = \Sigma m(0,2,3,6,7,8,10,11,13)$	(09)
		(1,5,0,0) Lin(0,2,5,0,7,0,10,11,15)	
Q.4	a)	With the help of neat diagram explain working of 2-input TTL NAND gate.	(07)
	b)	Differentiate between TTL and CMOS Logic family.	(06)
		SECTION - II	
		SECTION-II	
Q.5	a)	Design a 1-bit magnitude comparator.	(05)
	b)	Compare Decoder & Demultiplexer.	(04)
	c)	What is meant by "Universal shift register"?	(05)
Q.6	a)	Design a 4-bit Binary to Gray code converter and implement it using basic logic	(07)
	b)	gates. Design a full subtractor and explain it with the help of logic diagram.	(06)
	D)	Design a full subtractor and explain it with the help of logic diagram.	(00)
Q. 7	a)	Implement given multiple output function using a suitable decoder.	(07)
		$F_1(A,B,C,) = \sum_{n=1}^{\infty} m(0,4,7) + d(2,3)$	
		$F_2(A,B,C,) = \Sigma m(1,5,6)$	
	F)	$F_3(A,B,C_1) = \Sigma m(0,2,4,6)$ Explain with diagram the working of 1:16 demultiplexer.	(06)
	b)	Explain with diagram the working of 1.10 demaniplexer.	(00)
Q.8	a)	Explain serial-in-parallel out shift register mode operation using IC7495.	(06)
	b)	Design a MOD-5 ripple counter using a suitable flip flop.	(07)

* * * *