B.TECH. SEM -V (CHEMICAL 2014 COURSE (CBCS) : SUMMER - 2018

SUBJECT: CHEMICAL ENGINEERING MATHEMATICS

Day :

Wednesday 23/05/2018

S-2018-2321

Time: 10.00 AN

10.00 AM TO 01.00 PM

Max. Marks: 60

N.B.:

Date

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable **CALCULATOR** is allowed.
- 4) Assume suitable data if necessary.
- Q.1 Use secant method to find the root of following equation with initial guesses of [10] 0.02 and 0.05.

$$x^3 - 0.165x^2 + 3.993 \times 10^{-4} = 0$$

OR

Using Picard's method, obtain solution upto 5^{th} approximation

[10]

$$\frac{dy}{dx} = y + x \text{ when } y = 1, x = 0$$

Q.2 Determine the value of y for x = 1.5 using modified Euler's method [10]

$$\frac{dy}{dx} = x^2 + y$$
, $y(0) = 1$. Take h = 0.5.

OR

Using Euler's method, find an approximate value of y corresponding to x = 1 [10] given that $\frac{dy}{dx} = x + y$, y(0) = 1. Take h = 0.2.

- Q.3 Evaluate: $\int_{c}^{c} \frac{z^2 z + 1}{z 1} dz$ using Cauchy's integral formula where C is the [10]
 - circle
 - i) |z| = 1
- ii) $|z| = \frac{1}{2}$.

OR

Employ Stirling's formula to compute $y_{12,2}$ from the following table:

[10]

\mathbf{x}^0	10	11	12	13	14
$10^{5} \mu_{x}$	23967	28060	31788	35209	38368

Q.4 Solve the equations using matrix inversion method

[10]

$$3x + y + 2z = 3$$

$$2x - 3y - z = -3$$

$$x + 2y + z = 4$$

Solve using Jacobian method:

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

- Q.5 a) Three cities A, B and C are equidistant from each other. A motorist travels [05] from A to B at 30 km/hr, from B to C at 40 km/hr, from C to A at 50 km/hr. Determine the average speed.
 - **b)** An incomplete, frequency distribution is given below:

[05]

[10]

Variable	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
Frequency	12	30	?	65	?	25	18

Compute the missing values.

OR

Fit a straight line to following data:

[10]

Year, x	1961	1971	1981	1991	2001
Productivity, y in thousands tons	8_	10	12	10	16

Find expected production in 2006.

Q.6 Maximize
$$z = 4x_1 + 3x_2 + 6x_3$$

[10]

Subject to

$$2x_1 + 3x_2 + 2x_3 \le 440$$

$$4x_1 + 3x_3 \le 470$$

$$2x_1 + 5x_2 \le 430$$

$$x_1, x_2, x_3 \leq 0.$$

OR

Solve the following LPP by simplex method:

[10]

Minimize
$$z = x_1 - 3x_2 + 3x_3$$

Subject to

$$3x_1 - x_2 + 2x_3 \le 7$$

$$2x_1 + 4x_2 \ge -12$$

$$-4x_1 + 3x_2 + 8x_3 \le 10$$

$$x_1, x_2, x_3 \ge 0$$

* * * *