M. TECH.-III (ELECTRONICS V.L.S.I.) (CBCS – 2015 COURSE) : SUMMER - 2018

SUBJECT: ELECTIVE -I ALGORITHMS FOR VLSI DESIGN AUTOMATION

Day Date	:	Tuesday 29/05/2018	S-2018-3074	Time: Max. N	11.00 AM TO 02.00 PM Marks.: 60		
N.B.:							
	1)	All questions	s are COMPULSORY.				
	2)	Figures to the	e right indicate FULL marks.				
	3)	3) Answer to the both the sections should be written in SEPARATE answer books.					
	4) Assume suitable data if necessary.						
			SECTION-I	20			
Q.1	Describe physical design cycle for VLSI design. OR					(10)	
Q.1	Explain Depth First Search algorithm using suitable example.				(10)		
Q.2	What are the limitations of KL algorithm? How to overcome them?				,	(10)	
Q.2	OR Explain the Simulated Annealing algorithm for partitioning.					(10)	
Q.3	Discuss Simulated Annealing and Timber Wolf algorithms for placement. OR					(10)	
Q.3	Explain Breuer's algorithm for placement. SECTION-II					(10)	
Q.4	Exp	Explain any two Steiner Tree based algorithm for global routing.			(10)		
Q.4	OR Describe inter programming technique for routing.				(10)		
Q.5	Explain the classification of two layer algorithms for routing. Also discuss basic left edge algorithm.					(10)	
Q.5	Des	OR Describe Net Merge router with suitable example.					
Q.6	Explain constrained graph based compaction. OR					(10)	
Q.6	Describe two dimensional compaction.				(10)		