B. TECH. SEM – III (BIOMEDICAL ENGG.) (2014 COURSE) (CBCS) : SUMMER - 2018 SUBJECT: ANALOG ELECTRONICS | Day:
Date: | | S-2018-2264 Time: 02.30 P. Max. Marks: 60 | |)5.30 | |---------------|----------|--|------|-------| | N.B.: | | | | | | | 1) | All questions are COMPULSORY. | | | | | 2) | Figures to the right indicate FULL marks. | | | | | 3)
4) | Draw neat and labeled diagrams WHEREVER necessary. Use of non-programmable CALCULATOR is allowed. | | | | | | Ose of non programmatic CALCOLATOR is anowed. | | | | Q.1 | a) | Define stability factor. Derive general expression for stability factor. | (06) | | | | b) | Discuss transistor as a switch. | (04) | | | | | OR | | | | Q.1 | a) | Design a fixed bias circuit for CE amplifier such that operating point is at $V_{CE} = 8V$ and $I_{C} = 2mA$. Supply voltage is 15 V with silicon transistor of $\beta = 100$. consider emitter base voltage $V_{BE} = 0.6$ V. Calculate R_{B} and R_{C} that would be employed. | (06) | | | | b) | Draw the circuit diagram of collector-to-base bias circuit and mention its advantages over fixed bias circuit. | (04) | | | Q.2 | | A C.E. amplifier is driven by a voltage source of internal resistance $R_S=800\Omega$ and load resistance $R_L=1000\Omega$. The h-parameters are $h_{ie}=1k\Omega$, $h_{re}=2\times 10^{-4}$, $h_{fe}=50$ and $h_{oe}=25\mu A/\nu$. compute:- current gain, input resistance, voltage gain, output resistance using exact analysis and approximate analysis. | (10) | | | | | OR | | | | Q.2 | a) | Draw the diagram of generalized approximate model and show the direction of flow of currents. | (06) | | | | b) | Discuss Harmonic distortion and frequency distortion in amplifiers in short. | (04) | | | Q.3 | a) | Differentiate between BJT and FET. | (06) | | | | b) | Discuss the application of JFET. | (04) | | | | | OR | | | | Q.3 | | Determine I_D and V_{GS} for JFET shown in fig with $V_D = 7V$. $VDD = 12V$ | (10) | | | | | 6.8 m 1 5 8 RD 83.3 K-12 | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | Ų.4 | | drain characteristics. | (10) | | | | |-----|----|--|------|--|--|--| | | | OR | | | | | | Q.4 | a) | Differentiate between JFET and MOSFET. | (06) | | | | | | b) | Discuss MOSFET as VLSI device. | (04) | | | | | Q.5 | | Define clipper circuits. Discuss in working of basic and biased positive clipper circuits with input and output waveforms. | (10) | | | | | OR | | | | | | | | Q.5 | a) | Draw and discuss operation of voltage Tripler circuit. | (06) | | | | | | b) | Draw and explain Astable multivibrator circuit. | (04) | | | | | Q.6 | a) | Describe the operation and construction of photoconductive cell. | (06) | | | | | | b) | Draw V-I characteristics of phototransistor. | (04) | | | | | OR | | | | | | | | Q.6 | a) | Differentiate between LED and photodiode. | (06) | | | | | | b) | Discuss types of PCB in short. | (04) | | | | * *