S.D.E. B.C.A. SEM – I (CBCS - 2018 Course): SUMMER - 2019 SUBJECT: BUSINESS MATHEMATICS

Day : Tuesday Time: 02.00 PM TO 05.00 PM Date : 07/05/2019 Max. Marks: 70

S-2019-4946

N.B.:

- 1) Attempt **ANY FOUR** questions from Section I and **ANY TWO** questions from Section II.
- 2) Answers to both the sections should be written in SAME answer book.
- 3) Figures to the right indicate **FULL** marks.

SECTION - I

- Q.1 A bag contains 25 balls numbered 1 to 25. Suppose, selection an odd number is considered as success. Two balls are drawn from the bag with replacement. Find the probability of getting:
 - a) two successes
- b) at least one success
- Q.2 Compute the inverse of the matrix by cofactor and Adjoint method: [10] $A = \begin{bmatrix} 2 & 4 & -1 \\ 3 & 1 & 2 \end{bmatrix}$
- Q.3 If p and q are two statements, then prove that:

[10]

- **a)** $\sim (p \leftrightarrow q) \equiv p \leftrightarrow \sim q$
- **b)** $(\sim p \vee q) \wedge (\sim q \vee p) \equiv p \leftrightarrow q$
- Q.4 In a survey concerning the smoking habits of consumers, it was found that 55% [10] smoke cigarette A, 50% smoke B, 42% smoke C, 28% smoke A and B, 20% smoke A and C, 12% smoke B and C and 10% smoke all the three cigarette brands.
 - a) What percentage of consumers do not smoke?
 - b) What percentage of consumers smoke exactly two brands of cigarettes?
- Q.5 Write short notes on **ANY TWO** of the following:

[10]

- a) Bayes Theorem
- b) Logic operations
- c) Types of functions

P.T.O.

SECTION - II

Q.6 In how many ways the letters of the word below given be arranged so that [08] vowels are always together

i) MISSISSIPPI

ii) EQUATION

b) Discuss types of Set with suitable example of each type. [07]

Q.7 a) If $f = \{(2, 4), (3, 6), (4, 8), (5, 10), (6, 12)\}$ [08] $g = \{(4, 13), (6, 19), (8, 25), (10, 31), (12, 37)\}.$ Then find: i) gof ii) fog

Illustrate the concept of 'Conditional Probability'. [07]

a) If A and B are the subsets of the universal set X and n(X) = 50, n(A) = 35, Q.8 [08] $n(B) = 20, n(A' \cap B') = 5, find:$ i) $n(A \cup B)$ ii) $n(A \cap B)$

iii) $n(A' \cap B)$ iv) $n(A \cap B')$

b) If $^{n+1}P_3 = 10 \times ^{n-1}P_2$ then what is the value of n. [07]