B.Tech. SEM -V Mechanical 2014 Course (CBCS): SUMMER - 2019 SUBJECT: ADVANCED COMPUTER GRAPHICS AND SOILD MODELLING

Day: Date:	Monday 13/05/2019		S-2019-2687	Time: 10.00 AM TO 01.00 PM Max. Marks: 60		
N.B:	1) 2) 3) 4)	Figures to Draw ap	tions are COMPULSORY . to the right indicate FULL marks. propriate figures WHEREVER n suitable data if necessary.	ecessary.		
Q.1		_	line from (10, 12) to (20, 18) show the result on Cartesian graph	_	(10)	
		OR				
Q.1		Write Bresenham's algorithm for ploting pixels of the line having slope less than one.			(10)	
Q.2		transforme	ABCD with vertices A (1, 1), B ed to half its size, still the retaining tes of center of square are (2, 2) do The transformation matrix The Co-ordinates of transformed	ng square, at same position. If the etermine:	(10)	
	OR					
Q.2		Explain 22 neat figure	D transformation matrix for transes.	lation, Rotation and scaling with	(10)	
Q.3		A concate operations i) ii)	The rotation through 120 ⁰ about	Z axis 20 units along X and Y direction	(10)	
	OR					
Q.3		What is oblique projection? Explain various types of oblique projections.			(10)	
Q.4		$(0, 0), P_1$	equation of hermite cubic spline v (3, 0) with tangent vector P'_0 (ate points at U =0, U = 1/2, U = 2/2)	$(1, 1) P'_1(1, 1)$. Also calculate	(10)	
		OR				
Q.4		Explain o curve.	rder of continuity C_0 , C_1 and C_2	while designing the synthetic	(10)	
Q.5		means Z	gment with end point P_1 (0, 0), P_2 = 0. Rotate a line about x axis. Voints on the surface at $U = 0.5$ and	Which surface can be generated?	(10)	
	OR					
Q.5		Explain su	urface of revolution with neat sketo	thes.	(10)	
Q.6		-	urface CSG method of solid rall component.	nodeling with example of any	(10)	
		OR				
Q.6		Explain di	fferent sub sections of IGES files.		(10)	
			* *	* * *		

* * * *