B.Tech. SEM -IV Mechanical 2014 Course (CBCS): SUMMER - 2019 SUBJECT: TURBOMACHINARY

Day: Date:		Time: 10.00 AM TO 01.00 PM Max. Marks: 60
N.B:	1) 2) 3)	All questions are COMPULSORY . Figures to the right indicate FULL marks. Assume suitable data if necessary.
Q.1		Explain construction and working of Pelton wheel with neat sketch. Explain (10) general energy equation for turbine.
Q.1		OR Define speed ratio, jet ratio, flow ratio. Derive an expression for maximum (10) hydraulic efficiency for Pelton turbine.
Q.2		A reaction turbine works at 450 r.p.m under a head of 120 meters. Its diameter at inlet is 120 cm and the flow area is 0.4 m ² . The angles mode by absolute and relative velocities at inlet are 20 ⁰ and 60 ⁰ respectively with the tangential velocity. Determine. a) The volume flow rate b) The power developed
		OR
Q.2		Define the term 'Governing of a turbine'. Describe with a neat sketch the working of an oil pressure governor for water turbines.
Q.3		What are the methods of governing a steam turbine? Describe any one (10) method of governing steam turbines.
		OR
Q.3		Classify steam turbines in detail. Explain pressure- velocity compounding of an Impulse turbine with neat sketch. (10)
Q.4		A centrifugal pump is running at 1000 r.p.m. The outlet vane angle of the impeller is 45° and velocity of flow at outlet is 2.5m/s. The discharge through the pump is 200 liters/s. when the pump is working against a total head of 20m. In the manometric efficiency of the pump is 80%. Determine i) The diameter of the impeller ii) the width of the impeller at outlet.
Q.4		Explain construction and working of centrifugal pump with heat sketch. (10) Also explain NPSH and Thomas cavitations factor for centrifugal pump.
		OR
Q.5		With a neat sketch explain the essential parts of a centrifugal compressor (10). Also explain with neat sketch the inlet and exit velocity triangles for various types of blades.
Q.5		A centrifugal compressor running at 2000 r.p.m. receives air at 17^{0} c. If the outer diameter of the blade tip as 750 mm. find the temperature of the air leaving the compressor. Take Cp= 1 kJ/kg k
Q.6		What are the basic requirements of compressor for aircraft applications.? (10) Do axial flow compressors meet them? Explain .Discuss enthalpy- entropy diagram of an axial compressor.
		OR
Q.6		Explain construction and working of axial compressor with neat sketch. (10) Also Discuss performance characteristics of Axial compressor.

* * * * *