B.Tech. SEM -V Info. Tech. 2014 Course (CBCS): SUMMER - 2019 SUBJECT: THEORY OF AUTOMATA AND FORMAL LANGUAGE

Day: Date:	Thursd 09/05/2	\$ 70.10 7677	Time: 10.00 AM TO 01.00 PM Max Marks.: 60
N.B. :	1) 2) 3) 4) 5)	All questions are COMPULSORY . Figures to the right indicate FULL marks. Assume suitable data, if necessary. Use of non-programmable calculator is allowed. Draw neat and labeled diagrams wherever necessary.	y.
Q.	.1	Design a finite Automaton recognizing $(0+1)^*$ 1.0, and transition table.	Draw transition graph (10)
		OR	
Q.	.1	Design a finite automaton for $\sum = \{a, b\}$ contain bba.	ing either string ab or (10)
Q.	2	Prove that the language $L = \{a^n b^{n+1} \mid n > 0\}$ is non-lemma.	-regular using pumping (10)
OR			
Q.	2	Construct NFA for $0.1[((1.0)^+ + 111)^* + 0]^*1.0$.	(10)
Q	3	Consider following rules. $S \rightarrow ab \mid ba$, $A \rightarrow aS \mid bAA \mid a$, $B \rightarrow bS$ For the string aaabbabbba find: i) the leftmost derivation ii) the right most derivation iii) parse tree	aBB b
OR			
Q	3	Construct a grammar in GNF equivalent $S \rightarrow AA/a$ and $A \rightarrow SS/b$.	t to the grammar (10)
Q.	4	Draw PDA accepting language $L = \{a^{2n} \mid n > 0\}$	(10)
OR			
Q.	4	Write a short on application of PDA in expression c	onversion. (10)
Q.:	5	Design TM to find GCD of two given numbers.	(10)
OR			
Q.:	5	Explain Halting problem of Turing Machine.	(10)
Q.	6	What is Church –Turing hypothesis?	(10)
OR			
Q.	6	Explain application of minimization of grammar rul	es in detail. (10)

* * * *