B. Tech. SEM -II (Computer Science & Business Systems) (CBCS

2018 Course) : SUMMER - 2019 SUBJECT : STATISTICS - II

Day: Fri

Friday

24/05/2019

S-2019-2520

Time: 10.00 AM To 01.00 PM

Max. Marks: 60

N.B.:

Date:

1) All questions are **COMPULSORY**.

- 2) Use of non-programmable calculator is ALLOWED.
- 3) Figures to the right indicate FULL marks.
- 4) Assume suitable data if NECESSARY.
- Q.1 The table shows the corresponding values of three variables X_1 , X_2 and X_3 . Find the least square regression equation of X_3 on X_1 and X_2 . Estimate X_3 when $X_1 = 10$ and $X_2 = 6$.

X_1	3	5	6	8	12	14
X_2	16	10	7	4	3	2
X_3	90	72	54	42	30	12

OR

Q.1 Perform a two-way ANOVA on the data given below.

(10)

Plots of	Treatment								
land	A	В	С	D					
I	38	40	41	39					
II	45	42	49	36					
III	40	38	42	42					

(Given: for (3,6) d.f. $F_{0.05} = 4.76$ and for (2,6) d.f. $F_{0.05} = 5.14$)

Q.2 Led $(x_1, x_2, --- x_n)$ be a random sample of a Poisson's random variable with (10) unknown parameter λ . Determine the maximum likelihood estimators of λ .

OR

Q.2 What are criteria for Good Estimates? Discuss.

- (10)
- Q.3 Let X_1 , X_2 be a random sample of size 2, from the Poisson's distribution $f(X_1; \lambda) = \frac{\lambda^{X_1} e^{-\lambda}}{X_1!}$. Show that $T = X_1 + X_2$ is sufficient statistic.

OR

- Q.3 Let $X_1, X_2, --- X_n$ be a random sample from distribution with mean 0 and variance $\theta, \theta > 0$, Show that $T = X_1$ is not a complete statistic for θ , but $T_1 = X_1^2$ is complete statistic for θ .
- Q.4 Suppose a manufacturer of memory chips observes that the probability of a chip failure is p = 0.05. A new procedure is introduced to improve the design of chips. To test this new procedure, 200 chips could be produced using this new procedure and tested. Let random variable X denote the number of these 200 chips that fail. Let.

 H_0 : p = 0.05 (no change hypothesis)

 $H_1: p = 0.02$ (Improvement hypothesis)

Our rule is we would reject the new procedure if X>5.

Find the probability of a Type - II error.

Q.4 In a simple binary communication system, during every T seconds, one of two possible signals $s_0(t)$ and $s_1(t)$ is transmitted. Our two hypothesis are:

 $H_0: s_0(t)$ was transmitted.

 $H_1: s_1(t)$ was transmitted.

We assume that:

$$s_0(t) = 0$$
 and $s_1(t) = 1$, $0 < t < T$

The communication channel adds noise n(t), which is a zero-mean normal random process with variance 1. Let x(t) represent the received signal: $x(t) = s_i(t) + n(t)$, i = 0, 1. We observe the received signal x(t) at some instant during each signaling interval. Suppose that we received an observation x = 0.6. Using the Maximum likelihood test, determine which signal is transmitted. Also find P_I .

(Given: $\phi(0.5) = 0.6915$ and $\phi(-0.5) = 0.3085$)

Q.5 Two interviewers ranked 12 candidates (A to L) for the position. The results from most preferred to least preferred are:

Interviewer 1: A B C D E F G H I J K L

Interviewer 2: A B D C F E H G J I L K

Calculate Kendall Tau Correlation.

OR

Q.5 A typing school claims that in a 6 weeks intensive course, it can train students to type, on the average, at least 60 words per minute. A random sample of 15 of these students are given below:

Test the hypothesis that typing speed of graduates is at least 60 words per minute using Sign Test.

Student	Α	В	C	D	Е	F	G	Н	I	J	K	L	M	N	О
Words per minute	81	76	53	71	66	59	88	73	80	66	58	70	60	56	55

- Q.6 a) Write an R program to create Four vectors namely Patient id, Age, Diabetes, (05) and status. Put these Four vectors into Data frame.
 - b) Write the commands in R to create Class, Object and Function. (05)

OR

- Q.6 a) Write an R program to print the values in vectors using the While loop. (05)
 - b) Write the command in R console to update the Third element of the list and Display the resultant list. (05)

* * * * *