B.Tech. SEM -VII (Chemical 2014 Course (CBCS): SUMMER - 2019 SUBJECT: PROCESS DYNAMICS AND CONTROL

Day: Date:		uesday 05/2019	S-2019-2788	Time: 02.30 PM TO Max Marks. 60	05.30 PM
N.B.	1) 2) 3)	Figure	nestions are COMPULSORY. The set to the right indicate FULL marks. The suitable data, if necessary.		
Q.1		Derive re	esponse equation for mercury thermometer. OR		(10)
Q.1			ometer having time constant 5 second in a hot bath at 100^{0} F. The temperature reading after 5 seconds Time for 90 % response	_	(10)
Q.2	a) b)	-	mportance of ' ξ '. transportation lag or dead time.		(04) (06)
	OR				
Q.2		-	ange of magnitude 4 is introduced into a sy $G(s) = \frac{10}{s^2 + 6s + 4}$	stem having the transfer	(10)
		•	e: vershoot od of oscillation ii) max. value of y (t) iv) Ultimate value of y	/(t)	
Q.3			tional controller is used for $\frac{1}{(s+1)(0.5s+1)}$		(10)
		control sy	the steady state gain of controller is 5. Cystem. The set point of the control system e 0.5. determine the offset		
			OR		
Q.3		Describe	proportional controller for servo mechanism	n control problem.	(10)
Q.4		Construct	routh array for following system. $G(s) = \frac{1}{(s-1)^n}$	$\frac{3k_C}{+1)(s+3)(0.5s+1)}.$	(10)
			OR		
Q.4		Draw roo	t locus diagram for $G(s) = \frac{k}{s(s^2 + 2s + 2)}$.		(10)
Q.5		Draw Boo	de plot for First order system ii) Second orde	r system	(10)
Q.5		Describe :	OR Ziegler Nichols optimum controller settings	ı .	(10)
					` '
Q.6		Explain S	elective control systems in detail. OR		(10)
Q.6		Write sho i) ii)	rt note on: Feed forward - Feedback Control Split – Range Control		(10)

* * * *