M. Tech.-II (Civil-Hydraulic Engineering) (CBCS – 2015 Course) : SUMMER - 2019

SUBJECT: OPTIMIZATION IN HYDRAULICS

Day: Tuesday
Date: 11/06/2019

Time: 11.00 AM TO 02.00 PM

Max Marks: 60

S-2019-3400

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Answer to both the sections should be written in **SAME** Answer book.
- 4) Assume suitable data if necessary.

SECTION - I

Q.1 Solve the following LPP by graphical method.

[10]

$$Minimize \quad z = -x_1 + 2x_2$$

Subject to
$$-x_1 + 3x_2 \le 10$$

$$x_1 + x_2 \le 6$$

$$x_1 - x_2 \le 2$$

$$x_1, x_2 \ge 0$$

OR

Find the optimal solution by simplex method.

[10]

Maximize
$$z = 20x_1 + 25x_2$$

Subject to
$$12x_1 + 16x_2 \le 100$$

$$16x_1 + 8x_2 \le 80$$

$$x_1, \quad x_2 \ge 0$$

Q.2 Solve the following transportation problem to find initial basic feasible solution [10] by VAM method.

		I	Destinations	S		
		\mathbf{D}_1	D_2	D_3	D_4	Supply
	S_1	10	20	5	7	10
Stores	S_2	13	9	12	8	20
	S_3	4	15	7	9	30
	S ₄	14	7	1	0	40
	S ₅	3	12	5	19	50
	Demand	60	60	20	10	

OR

a) Explain how to solve maximization transportation problem.

[05]

b) Solve the following assignment problem.

[05]

Machines									
		M_1	M ₂	M_3	M_4				
	J_1	15	11	13	15				
Jobs	J_2	17	12	12	13				
	J_3	14	15	10	14				
	J_4	16	13	11	17_				

P.T.O.

