M. Tech. (Nano Technology) Sem-II (CBCS – 2015 Course) : SUMMER - 2019

SUBJECT: NANO COMPUTING

Day : Monday

Time: 11.00 AM TO 02.00 PM

Date

· · · · ·

03/06/2019

Max. Marks: 60

S-2019-3347

N.B.:

- 1) All questions are COMPULSORY.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non programmable CALCULATOR is allowed.
- 4) Answer to both the sections should be written in **SAME** Answer book.

SECTION-I

Q.1 The velocity V(km/min) of a moped which starts from rest is given at fixed [10] intervals of time t (min) as follows:

-	t	2	4	6	8	10	12	14	16	18	20
	y	10	18	25	29	32	20	11	5	2	0

Estimate approximately the distance covered in 20 minutes.

OR

Use L – U decomposition method to solve the system of equations
$$3x_1 + 2x_2 + 7x_3 = 4$$

$$2x_1 + 3x_2 + x_3 = 5$$

$$3x_1 + 4x_2 + x_3 = 7$$

- Q.2 i) The function f(x) defined by $f(x) = \frac{a}{x} + bx$, f(2) = 1 has an extremum at x = 2. Determine a and b.
 - ii) The velocity of waves of wave-length λ on deep water is proportional to [05] $\sqrt{\frac{a}{\lambda} + \frac{\lambda}{a}}$ where 'a' is certain constant. Prove that the velocity is minimum when $\lambda = a$.

OR

For the function $f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$ approximate [10] value of its derivative at x = 0.5.

- i) Using Forward difference formula.
- ii) Using Backward difference formula.
- iii) Using Central difference formula.
- iv) Which of the above three is better approximation to the real answer?

Q.3 Determine the response of damped vibrating system corresponding to. [10]
$$\frac{d^2y}{dt^2} + 4y = r(t), \text{ where } r(t) = \begin{cases} 1 & \text{if } 0 < t < 1 \\ 0 & \text{if } t > 1 \end{cases} y(0) = 1, y'(0) = 0.$$

OR

Find the Fourier co-efficients of the periodic function f(x) where [10]

$$f(x) = \begin{cases} -k & \text{if } -\pi < x < 0 \\ k & \text{if } 0 < x < \pi \end{cases} \text{ and } f(x+2\pi) = f(x)$$

P.T.O.

SECTION - II

Q.4		What is simulation? Discuss data manipulation and data exchange of structures, role in simulation.	[10]					
		OR						
Q.5		Explain metropolis algorithm using the Monte Carlo Markov chains.						
	i) ii)	Write a note on Monte Carlo methods using the following points: The need for Monte Carlo methods Monte Carlo method in mathematics.						
		OR						
		Discuss finite difference methods with reference to truncation error, single and multi-step schemes.	[10]					
Q.6	Discuss Nano-design and Nano CAD.							
		OR						
		Write a short note on nano-optics.	[10]					