B.Tech. SEM -VI Electrical 2014 Course (CBCS): SUMMER - 2019 SUBJECT: MODERN CONTROL SYSTEMS

Day: Date:		onday /05/2019	S-2019-2735	S-2019-2735 Time: 02.30 PM TO 05.30 PM Max Marks: 60		
N.B.:	1) 2) 3) 4)	Figures to the right Use of non-program	COMPULSORY. ht indicate FULL marks. ammable calculator is ALLOWE data, if necessary.	D.		
Q.1	a) b)	advantages of state-value Define the concept of	of transfer function approach of ariable approach over classical app f state, state variables, state vectoresentation of General Control Sy	proach? or and state space. Draw	(05) (05)	
Q.1	a) b)	a linear single input si	OR diagram and mathematical expreingle output system. of state model in Power Sector.	ssions the state model of	(05) (05)	
Q.2	a) b)	_	s and non-homogeneous linear time state equation for linear time involved OR	· ·	(05) (05)	
Q.2	a) b)	-	nce of State Transition Matrix (ST to determine STM using Infinite st		(05) (05)	
Q.3	a) b)	Explain the concept o Describe the derivation	f describing function. on of describing function of variou OR	is non linear elements.	(05) (05)	
Q.3	a)b)	of describing function	sis using describing function. List method. f existence of limit cycle.	the merits and demerits	(05) (05)	
Q.4		Solve the following dif $(k+2) + 3f(k+1) + 2$ f(0) = 0, $f(1) = 1$	ifference equation by using z-trans $f(k) = 0$;	sform method.	(10)	
			OR			
Q.4		Find the response of the f(k+2) - 5f(k+1) + 6f Given that, $f(0) = 0$		ence equation:	(10)	
Q.5		Explain in detail ana suitable mathematical	lysis of discrete time system usi equations/example. OR	ing routh's criteria with	(10)	
Q.5		<u> </u>	Pulse Transfer function of close al equations and draw figure/bloc.	- ·	(10)	
Q.6		Write short notes on a working with practical		ock diagram and explain	(10)	
	OR					
Q.6			Model reference Adaptive control vorking with practical applications	•	(10)	

* * * * *