B.Tech. SEM -IV Production 2014 Course (CBCS): SUMMER - 2019 SUBJECT: EMGINEERING MATHEMATICS-III

Day: Thursday
Date: 23/05/2019

Time: 10.00 AM TO 01.00 PM

S-2019-2627

Max. Marks: 60

N.B:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Assume suitable data if necessary.
- 4) Non programmable **CALCULATOR** is allowed.

Q.1 a) Solve:
$$(D^3 + 4D)y = \sin 2x$$
. (05)

b) Solve:
$$\frac{dx}{3z-4y} = \frac{dy}{4x-2z} = \frac{dz}{2y-3x}$$
. (05)

OR

- a) Solve the differential equations $(D^2 + 4)y = \tan 2x$ by the method of variation of parameters.
- b) Solve: $x^2 \frac{d^2 y}{dx^2} 4x \frac{dy}{dx} + 6y = x^5$. (05)

Q.2 a) Evaluate using Laplace Transform
$$\int_{0}^{\infty} \frac{\cos 6t - \cos 4t}{t} dt$$
 (05)

b) Find the Laplace transform of the function
$$\sin(\omega t + \alpha)$$
. (05)

OR

- Find the inverse Laplace Transform of the function $\log \left(\frac{s+b}{s+a} \right)$. (05)
- b) Using Laplace Transform solve the following differential equation $\frac{d^2y}{dt^2} 3\frac{dy}{dt} + 2y(t) = 12e^{-2t}.$ (05)

Q.3 Solve
$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
, subject to conditions. (10)

- i) u(0,t)=0,
- ii) u(100,t)=0,

iii)
$$u(x,0) = x,$$
 $0 \le x \le 50$
= $100 - x,$ $50 \le x \le 100$

iv) u(x,t) is finite $\forall t$

OR

The differential equation of a string is, (10)

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

The given conditions are,

- i) $y(0,t) = 0; \forall t$
- ii) $y(l,t)=0; \forall t$

iii)
$$\left(\frac{\partial y}{\partial t}\right)_{t=0} = 0; \quad \forall x$$

iv)
$$y(x,0)=3(lx-x^2); 0 \le x \le l$$

Q.4 The scores obtained by two batsman A and B in 10 matches are given (10)below. Determine who is more consistent and who is better run getter?

Batsman A	30	44	66	62	60	34	80	46	20	38
Batsman B	34	46	70	38	55	48	60	34	45	30

OR

Calculate standard deviation for the following frequency distribution. a) (05)Decide whether A.M. is good average.

x	5	15	25	35	45	55
f	5	9	15	12	10	03

- Find the first four moments about the working mean 44.5 of a distribution (05)are -0.4, 2.99, -0.08 and 27.63. Calculate the moments about the mean. Also calculate β_1 and β_2 .
- Q.5 Find the coefficient of correlation for the following table.

X_i	10	14	18	22	26	30
fi	18	12	24	6	30	36

The two regression equations of the variables x and y are x=19.13-0.87y, y = 11.64 - 0.50x

(05)

(05)

Find: i)

ii) The correlation coefficient between x and y.

Calculate the regression lines of x on y and y on x from the (10)following data and estimate x when y = 26 and estimate y when x = 2621.

y_i	10	12	13	17	18	20	24	30
f_i	5	6	7	9	13	15	20	21

Find the probability of getting 4 heads in 6 tosses of fair coin. **Q.6** a)

(05)(05)

Assume that probability of an individual coal miner being killed in a mine accident during a year is $\frac{1}{2400}$. Calculate the probability that in mine employing 200 miners, there will be at least one will killed by accident in a year.

OR

In a sample of 1000 cases, the mean of certain test is 14 and S.D. is 25. (05)Assuming the distribution is normal. Find how may students score between 12 and 15.

(Given; A(z=0.08)=0.0319, A(z=0.04)=0.0160)

The number of computer science books borrowed from a Library during a (05)particular week is given below.

i	Davs	Mon	Tues	Wed	Thu	Fri	Sat	1
	Number of books borrowed	140	132	160	148	134	150	

Test the hypothesis that the number of books borrowed does not depend on the day of the week

(Taking 5% level of significance, Given; $\chi_{0.05,5} = 11.07$)