B. Tech. Sem -III (E & TC Engg.) (2014 COURSE) (CBCS) : SUMMER - 2019 ## SUBJECT: ELECTRONIC DEVICES AND APPLICATIONS | Day:
Date: | | Time: 02.30 PM TO 05.30 Max Marks. 60 S-2019-2588 | | | | |---------------|---|--|--------------|--|--| | N.B.: | All questions are COMPULSORY. Figures to the right indicate FULL marks. Assume suitable data, if necessary. | | | | | | Q.1 | | Design an emitter current bias circuit using silicon transistor with $\beta_{(typ)} = 60$. (1 Supply $V_{CC} = 30V$ the desired bias conditions are $V_{CEQ} = 10V$ and $I_{CQ} = 1mA$. Determine the values for R_C , R_E , R_1 and R_2 . Also calculate maximum and minimum levels of V_{CE} for $\beta = 40$ and $\beta = 80$. | 10) | | | | Q.1 | | | (0) | | | | Q.2 | | A common emitter amplifier circuit uses a transistor with $h_{fe} = 50$, $h_{ie} = 1$ (1 $k\Omega$, $h_{oe} = 10^{-6}$ S, $R_C = 3.9$ $k\Omega$, $R_E = 4.7$ $k\Omega$, $R_1 = 68$ $k\Omega$, $R_2 = 56$ $k\Omega$, $R_L = 82k\Omega$. calculate A_V , A_I , A_P , Z_i & Z_o . | l 0) | | | | Q.2 | | | l 0) | | | | Q.3 | | $V_{DD} = 25V, V_{GS} (off) = -6V.$ | l 0) | | | | Q.3 | | OR Design and explain output characteristics of N-Channel and P-Channel JFET. (1 Define the terms g_m , r_d and μ . | l 0) | | | | Q.4 | | MOSFET given $R_1 = 90$ k, $R_2 = 45$ k Ω , $R_D = 5$ k Ω , and $R_S = 2$ k Ω . $V_T = 1$ V, $k'(W/L) = 2$ mA/ V^2 . | l 0) | | | | Q.4 | | OR Explain with constructional diagram, the difference between D-MOSFET and (1 E-MOSFET. | l 0) | | | | Q.5 | | $\pm 8V, V_0 \text{ (min)} = 7V, I_L = 5\text{mA}.$ | l 0) | | | | Q.5 | | OR Explain the working of voltage quadrupler circuit and state its applications. (1) | l 0) | | | | Q.6 | | voltage = 12V. Calculate power dissipation across the LED. (given $V_{LED} = 3.4 \text{ V}$). | 10) | | | | Q.6 | | OR Draw and explain the construction and working of optocoupler. Also state its application. | 10) | | | * * * *