B.Tech. SEM -V Electronics Engg.) 2014 Course (CBCS) : SUMMER - 2019

SUBJECT: ELECTROMAGNETIC ENGINEERING

Day Date	:	Wednesday 15/05/2019 S-2019-2676 Time: 10.00 Max. Marks:	O AM TO 01.00 PM 60
N.B.:	1) 2) 3)	Figures to the right indicate FULL marks.	
Q.1	a) b)		[05] [05]
		OR	
	a) b)		[05] [05]
Q.2	a)	theorem).	
	b)	Find E at points P(3, 8, -3) and Q(8, 2, 6) due to sheet charge 24 nC/m ² at $y = 4$ plane.	located [04]
		OR	
	a)	Discuss in detail boundary conditions of electrostatic fields at b between conductor-dielectric.	oundary [06]
	b)	Find electric flux density at (6, 4, -5) due to line charge $\rho_L = 40 \mu \text{C/m}$ or	n z-axis. [04]
Q.3	a)	Find the force on conductor if the field in region is $B = 0.05a_x T$.	irection. [04]
	b) c)	·	[03] [03]
		OR	
	a) b)		[04] element [04]
	c)		[02]
Q.4	a)	Write down Maxwell's equation in point and integral form for time-fields.	-varying [05]
	b)	In a lossless medium for which $\eta=40\pi$, $\mu_r=1$, find ε_r and ω .	[05]
		OR	
	a) b)		[05] [05]
Q.5	a)	For a transmission line the per unit length parameters are $0.1 \Omega/m$, 0.10 PF/m and 0.02 S/m. Find complex propagation constant at i) 1MHz ii) 1GHz.	•
	b)		[05]
		OR	
		Derive the expressions for input impedance, phase velocity and group of transmission line.	velocity [10]
Q.6		Write short note on: i) Hertzian dipole ii) Magnetic dipole	[10]
		OR	
		Derive the field expressions for TE wave in a rectangular waveguide.	[10]