B.Tech. SEM -V (E & TC Engg.) 2014 Course (CBCS): SUMMER - 2019 ## SUBJECT: ELECTROMAGNETIC ENGINEERING | Day:
Date: | Wednesday
15/05/2019 | | 019-2704 | Time: 10.00 AM TO 01.00 P. Max Marks: 60 | | |---------------|-------------------------|---|----------------------------------|--|--------------| | N.B.: | 1)
2)
3) | 2) Figures tot eh right indicate FULL marks. | | | | | Q.1 | a)
b) | | | | (05)
(05) | | | | | OR | | | | Q.1 | a)
b) | What is the significance of elect
If $U = xz - x^2y + y^2z^2$, evaluate | _ | | (05)
(05) | | Q.2 | a)
b) | Determine the electric filed due What is Gauss law? Explain it. | to continuous line charge. | | (05)
(05) | | | | | OR | | | | Q.2 | a)
b) | What is divergence theorem? Ex What is electric flux density? | xplain it. | | (05)
(05) | | Q.3 | a)
b) | Explain the boundary condition What is Biot's Savart law? Expl | - | | (05)
(05) | | | | | OR | | | | Q.3 | a)
b) | Determine the force on a curren
What is Ampere's Circuital
through infinitely long co-axial | law? Explain the magnetic | field intensity | (05)
(05) | | Q.4 | a)
b) | Explain the Maxwell's equation What is displacement current? | | | (05)
(05) | | | | | OR | | | | Q.4 | a)
b) | State Faraday's law and explain What is mmf in moving loop in | | | (05)
(05) | | Q.5 | a)
b) | Determine the plane wave equat State Poynting theorem and exp | | ic media. | (05)
(05) | | | | | OR | | | | Q.5 | a)
b) | Define the boundary condition of What is the effect on transmitted normal incidence? | = | it is reflected at | (05)
(05) | | Q.6 | a)
b) | Derive an expression for transm
An air line has a characteristic
3rad/m at 100 MHz. Calculate t
meter of the line. | impedance of 70Ω and a pl | nase constant of | (05)
(05) | | | | | OR | | | | Q.6 | a)
b) | What is VSWR? What do you mean by attenuation | | | (05)
(05) | * * * * *