B.Tech. SEM -VII Electrical 2014 Course (CBCS): SUMMER - 2019 SUBJECT-ELECTIVE-III DIGITAL SIGNAL PROCESSING

Day:	10/	onday 05/2019 S-2019-2		Time: 02.30 PM TO 05.30 PM Max. Marks: 60	
N.B.:					
	1)	All questions are COMPULS			
	2)	Figures to the right indicate F			
	3)	Assume suitable data wherever	er necessary.		
Q.1	a)	Give frequency response of first of	onder discuste existens	(0.5)	
Ų.I	a) b)	Explain the following Discrete tin		(05)	
	ω,	i) Linear and Non linear		(05)	
Q.1	a)	State and explain sampling theore		(05)	
_	b)	Discuss the classification of Disc		(05)	
Q.2		State and explain following prope	erties of Fourier transform.	(10)	
		i) Linearity		, ,	
		ii) Time shifting			
		iii) Convolution theorem			
0.1	۵)	Define 7 transforms and its DO	OR	7 (05)	
Q.2	a)	transform?	C. What is the condition for existence of	Z (05)	
	b)	Define Inverse Z transform by using	ing Partial Fraction method	(05)	
	υ,	$X(Z)= (1+Z^{-1}) / (1+5 Z^{-1}+6 Z^{-2})$	ing I artial I raviron method	(03)	
Q.3	a)	Define and explain group delay as	nd phase delay	(05)	
	b)	What is meant by ideal selective filters? Draw the ideal filter characteristics of all types of filters			
			OR		
Q.3	a)	Write a short note on frequency re		(05)	
-		i) single pole system	•	` ,	
		ii) single zero system			
	b)	Explain four types of GLPS Syste	ems in brief	(05)	
Q.4	a)	State the circular shift property of	DFT	(05)	
	b)	Find the circular convolution of for	ollowing sequence by matrix method:	(05)	
		$x_1(n) = \{1,2,1,2\}$ and $x_2(n) = \{1,2,3\}$			
			OR	(O. P.)	
Q.4	a)	Explain radix -2 DIF -FFT algorit		(05)	
	b)	Find the DFT of a sequence $x(n)$ =	·{1,0,2,3}	(05)	
Q.5	a)	Give the comparison between ana	olog & digital filters	(05)	
Ų.S	a) b)	Explain design steps of IIR Butter	- -	(05)	
	U)	Explain design steps of the Butter	OR	(00)	
Q.5	a)	The analog transfer function H(s)	$=3/(S^2+5S+4)$. Determine H(z) using impuls	se (0 5)	
_		invariant transformation assuming	g T=1 sec.		
	b)	Explain design of FIR filter with r	rectangular window.	(05)	
Q.6	a)	Explain parallels form & cascade	form structure of IIR system	(05)	
Z.0	a) b)	Determine the direct from II realize	-	(05)	
	~;	y(n)=-0.5(n-1)+0.85y(n-2)-0.4x(n-2)		(00)	
			OR		
	a)	Explain basic structure of FIR filter		(05)	
	b)	Write a short note on finite registe	er length effect	(05)	
	-	-			

* * * * *