B. Tech. SEM -VII (Computer) 2014 Course (CBCS): SUMMER - 2019 SUBJECT- ELECTIVE III: ARTIFICIAL INTELLIGENCE & ROBOTICS

Oay: Oate:	Wedn 15/05	esday /2019	S-2019-2807	Time: 02.30 PM TO 0 Max Marks: 60	
I.B. :					
	1)	-	ns are COMPULSORY.		
	2)	Figures to t	he right indicate FULL marks.		
	3)	Assume su	table data if necessary.		
).1	foll " G fill	Give the initial state, goal state, successor function and cost function for the following and solve the problem using Hill Climbing: "Given 3 jugs measuring 12 liters, 8 liters, and 3 liters and water tap. You can fill the jugs, and empty them from one to another or on the ground. The goal is to measure exactly 1 Liter water."			
	г.	.1 41 . N.42 . 3	OR	C MANY	(10)
	_	Explain the Minimax Algorithm to determine the optimal strategy for MAX to decide the best first move.			
Q.2	Explain Uncertainty? Explain Bayesian network with example. OR				(10)
	Trai con	nsform the Pr ceptual graph i) $\forall x$ no	arious methods of Knowledge Representative dicate Logic statements given below into	-	(10)
2.3		Define Partial Order Planner. Explain STRIPS representation of planning problem.			(10)
			OR		(10)
	Def	Define Planning. Explain the components of planning system in detail.			
2.4		What are the basic building blocks of Learning Agent? Explain each of them with a neat block diagram.			(10)
		OR			
	Des	cribe the Dig	ital Tree Algorithm with an example.		(10)
Q.5	Fine	Find Kinematic transformation matrix using D-H method for a robot. OR			
		What are the different types of robot drive system? Explain with advantages and disadvantages.			
Q.6	Obta	Obtain Inverse Kinematic solution for 4-axis SCARA Robot. OR			
		•	ts according to the coordinates of motion we the features of each type.	vith a sketch and	(10)

* * * *