B. Tech. Sem –III (Electrical Engg.) 2014 COURSE) (CBCS) : SUMMER - 2019

SUBJECT: DIGITAL COMPUTATIONAL TECHNIQUES

Day: Tuesday
Date: 14/05/2019

Time: 02.30 PM TO 05.30 PM Max Marks. 60

te: 14/05/2019 S-2019-2564

N.B. :

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate **FULL** marks.
- 3) Draw neat diagrams **WHENEVER** necessary.
- 4) Use of scientific calculator is **ALLOWED**.
- Q.1 a) State and explain operators in C++ along with one example each. (06)
 - b) Write a short note on control statements in C++.

OR

- Q.1 a) What are the loops in C++? Why it is required while writing any program? (06) Explain types of loops with examples for each.
 - b) What are arrays in MATLAB? Explain with examples. (04)
- Q.2 a) State and explain Intermediate value theorem with its graphical (06) representation. Write an example which satisfies Intermediate value theorem.
 - b) Solve the following: (04) Multiply the floating numbers: 47.31834×10^{15} & 3.1942×10^{12} Add the following numbers: 0.4731923×10^7 & 0.783329×10^7

OR

- Q.2 a) Explain Rolle's Theorem in detail. (06)
 - b) Discuss briefly the different types of errors encountered in performing (04) numerical calculations.
- Q.3 a) Using 3 iterations of bisection method, determine roots of the equation: (06) $f(x) = -0.9x^2 + 1.7x + 2.5. \text{ take initial values : } x_1 = 2.8 & x_2 = 3$
 - b) Find straight line to following data and estimate the value of y corresponding (04) to x=6

X	0	5	10	15	20	25
у	12	15	17	22	24	30

OR

- Q.3 a) Find the root of $\sin x = x-2$ by Regula Falsi method, where x is in radians. (06) Perform 5 iterations only. Take initial approximation as (2, 3)
 - b) Find the root of $f(x) = 3x + \sin x e^x$, correct to four decimal places using (04) Newton Raphson method. Take initial approximations as 0.
- Q.4 a) The temperature viscosity relationship is given for hydrodynamic bearing is (06) as follows:

t ⁰ C	40	41	42	43	44	45
Z(CP)	52.5	50	47.5	45	43	41

Calculate the temperature of lubricant for viscosity of (43.2) using Newton's backward difference method.

b) Given that: y(5) = 4, y(6) = 3, y(7) = 4, y(8) = 10, y(7) = 4. find $\Delta^4 y(5)$ (04)

X	5	6	7	8
у	4	3	4	10

P.T.O.

(04)

Find f(x) at x=7 from following table by using Sterling Interpolation (05) Q.4 a) formula.

X	2	4	6	8	10
y=f(x)	5	49	181	449	901

Find the value of y at x = 1.5 by using Lagrange's Interpolation method (05)b)

X	0	1	2	5
y=f(x)	2	3	12	147

Find the value of $\frac{dy}{dx}$ for x = 0.2 from following table: (05)

X	0.1	0.2	0.3	0.4	0.5	0.6
$y = \log x$	- 2.30	- 1.6	- 1.2	- 0.91	- 0.69	- 0.51

Evaluate $\int_{0}^{\infty} x \cdot \sin x \, dx$ using Trapezoidal rule for 13 ordinates. (05)

Q.5 a) Solve $\frac{dy}{dx} = x^2 + y^2$. Given that y (0) = 1, find y at x = 0.1 and x = 0.2 using (06)Taylor series method.

State and explain Euler's Method for solution of ordinary differential (04)b) equation.

Q.6 a) Solve the following equations by Gauss-Seidel Iterative method correct to (05) three significant digits

$$x_1 + 10x_2 - 4x_3 = 6$$
$$2x_1 - 4x_2 + 10x_3 = -15$$
$$9x_1 + 2x_2 + 4x_3 = 20$$

Solve the following equations by Gauss elimination method b)

(05) $x_1 + 20x_2 + x_3 = 22$ $-x_1 - x_2 + 20x_3 = 18$ $20x_1 + x_2 - x_3 = 20$

Find the inverse of following matrix using Gauss Jordan elimination method (06)**Q.6** a)

$$\begin{bmatrix} 1 & 2 & -1 \\ 3 & 8 & 2 \\ 4 & 9 & -1 \end{bmatrix}$$

Find the numerically larger Eigen value of the matrix by Power method (04)b)

$$A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$

Take initial value as

$$X_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$