B.Tech. SEM -IV E & TC 2014 Course (CBCS): SUMMER - 2019 SUBJECT: CONTROL SYSTEM ENGINEERING

Day :

Tuesday

Time: 10.00 AM TO 01.00 PM

Date :

28/05/2019

S-2019-2637

Max. Marks: 60

N. B. :

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Draw neat and labeled diagram WHEREVER necessary.
- 4) Assume suitable data, if necessary.

Q. 1 a) Find C(s) / R(s) of system shown below:

(06)

b) Derive the expression for T. F. of closed loop system.

(04)

OR

a) Find T. F. of the $E_o(s)/E_i(s)$ of the following network:

(05)

b) What is Mason's gain formula? Draw SFG for given block diagram.

(05)

- Q. 2 a) What is Thermistor? Explain working principle of Thermistor.
- (05)
- b) What is the role of flow meters and level measuring instruments in industry?

(05)

OR

a) What is strain gauge?

(05)

b) Explain the construction of LVDT.

(05)

Q. 3 a) What is mean by following terms: (05)

- i) Transient Response
- ii) Steady state Response
- iii) Maximum overshoot
- iv) Rise time
- v) Peak time
- **b)** A unity F/B system is characterized by an open loop T.F. **(05)** $G(s) = \frac{k}{s(s+10)}.$

Determine gain k so that the system will have damping ratio of 0.5 for this value of k, determine setting time, peak over shoot for unit step i/p.

OR

- a) Obtain unit step response of unity F/B system whose open loop T.F. (05) $G(s) = \frac{2s+1}{s^2}$
- **b)** For a closed loop system with $G(s) = \frac{1}{s+5}$ and H(s) = 5 Calculate general error coefficients.

Q. 4 a) Sketch Pole – zero plot for following T.F.
$$G(s) = \frac{(s+1)(s+2)}{s^2(s^2+5s+6)}$$
. (07)

b) Using Routh-Hurwitz criterion, determine stability of closed loop system of having characteristic equation as: $s^6 + 2s^5 + 8s^4 + 16s^3 + 20s^2 + 15s + 16 = 0.$

OR

- a) For given characteristic equation of F/B system determine range of k for (04) stability and $s^4 + 25^3 + 15s^2 + 20s + K = 0$.
- b) Sketch root locus for a system with open loop T.F. (06) $G(s) H(s) = \frac{k(s+2)}{s^2 + 4s + 12}$
- Q. 5 a) What is correlation between Time domain and Frequency domain (04) specifications?
 - **b)** Sketch Polar plot for unit F/B system open loop T.F. $G(s) = \frac{1}{s(s+2)}$

OR

The open loop T.F. of an unity F/B system is given by $G(s) = \frac{1000 (1 + 0.2s)}{s (1 + 0.1s)}$ (10)

Draw bode plot and find phase margin and gain margin.

- Q. 6 a) What are the control Actions? Explain any on in detail. (05)
 - b) Explain PID controller. (05)

OR

Explain ladder diagrams significance using one suitable example by drawing (10) diagram for the same.