M. Tech. -II (Chemical Engineering) (CBCS - 2015 Course): **SUMMER - 2019**

SUBJECT: CHEMICAL REACTOR ANALYSIS & DESIGN

Day: Thursday Time: 11.00 AM TO 02.00 PM

Date: 06/06/2019

S-2019-3423

Max Marks: 60

N.B.:

- All questions are **COMPULSORY**. 1)
- 2) Figures to the right indicate FULL marks.
- 3) Answer to both the sections should be written in **SAME** Answer book.

SECTION - I

Q.1 Elaborate on optimal temperature policies.

[10]

OR

A desired product 'P' is made according to the following reaction scheme

$$A \xrightarrow{1} P \xrightarrow{3}_{Y} \qquad k_{i} = A_{i}e^{-EIRT}$$

Discuss qualitatively optimum temperature profile for the two cases:

i)
$$E_2 > E_3 > E_1$$

ii)
$$E_2 > E_1 > E_3$$

Q.2 a) The batch saponification of ethyl acetate $CH_3COOC_2H_5 + NaOH \rightleftharpoons CH_3COONa + C_2H_5OH$ was carried out in a 200 ml reactor at 26°C. The initial concentration of batch reactants was 0.051N.

From the following time vs concentration data, determine the specific rate and tabulate as a function of composition of reacting mixtures.

Time (s)	30	90	150	210	270	390	630	1110
NaOH (mol/l)	0.0429	0.0340	0.0282	0.042	0.0209	0.0169	0.0118	0.0067

b) Determine a suitable reaction rate model for this system.

[05]

[05]

OR

Differentiate between fluidized bed and trickle bed reactor with design [10] parameters.

Q.3 Discuss steady state non-isothermal reactor design. [10]

Elaborate about tubular reactor with heat exchange.

SECTION - II

Q.4 Illustrate adiabatic operation of batch reactor. [10]

Discuss unsteady state operation of CSTR.

Q.5 Give detail design of fixed bed catalytic reactor at isothermal condition. [10]

OR

Give detail design of fixed bed catalytic reactor at adiabatic condition.

Discuss design aspects of reactors with non ideal flow. **Q.6**

[10]

OR

Discuss micro and meso mixing in reactors.