B.Tech. SEM -VI (Chemical 2014 Course (CBCS): SUMMER - 2019 SUBJECT: CHEMICAL PROCESS EQUIPMENT DESIGN - I

Day: Date:	Frida 24/0	Time: 02.30 PM TO 05 5/2019 S-2019-2706 Max Marks: 60	5.30 PM	
N.B.:	1) 2) 3) 4)	All questions are COMPULSORY . Figures to the right indicate FULL marks. Use of non programmable calculator is ALLOWED . Assume suitable data, if necessary.		
Q.1	a)	Explain the theories of failure.	(05)	
	b)	Elaborate in detail various mechanical properties of material. OR	(05)	
		Explain general design procedure.	(10)	
Q.2	a)	Explain the Torispherical head design.	(05)	
	b)	What are the general considerations in pressure vessel.	(05)	
		OR		
		Derive the equation for designing of thin walled vessel under internal pressure.	(10)	
Q.3		Explain various types of supports in detail.	(10)	
		OR		
	a)	Explain criteria for selection of supports.	(05)	
	b)	Explain various stress induced in supports.	(05)	
Q.4		Design an exchanger to sub cool condensate from a methanol condenser from 95°C to 40°C flow rate of methanol is 100000 kg/h. Brackish water will be used as a coolant with a temperature rise from 25°C to 40°C. (Consider only thermal design) Shell bundle clearance is 68 mm.	(10)	
		OR		
	a)	Explain general design procedure for shell and tube heat exchanger.	(05)	
	b)	Explain Kern's method.	(05)	
Q.5		Derive the equation for power consumption by agitator.	(10)	
-		OR		
		Explain various agitators used in chemical process industry.	(10)	
Q.6		Estimate the sedimentation rate in gravity separation and centrifugal separation for the limiting particle size d $_{lim}=8~\mu m$ Particle density = $1050~kg/m^3$ Liquid density= $1000~kg/m^3$ Viscosity of continuous phase = $1.0\times10^{-3}~N\text{-S/m}^2$	(10)	
		OR		
	a)	Explain general design procedure for decanter.	(05)	
	b)	Explain evaporator design.	(05)	
		* * *		