M. Tech. –I (Chemical Engineering) (CBCS – 2015 Course): SUMMER - 2019

SUBJECT: APPLIED MATHEMATICS FOR CHEMICAL ENGINEERING

Day: Thursday

Time: 11.00 AM TO 02.00 PM

Date: 16/05/2019

S-2019-3393

Max Marks: 60

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable **CALCULATOR** is allowed.
- 4) Answers to both the sections should be written in 54 ME answer books.

SECTION-I

Q.1 Write note on:

a) Data uncertainty

(04)

b) Truncation error

(03)

c) Round off errors

(03)

OR

Q.1 Explain stepwise short cut method for one way ANOVA

(10)

Q.2 Determine the real root of $x^{3.3}$ = 79 with the False-position method to within (10) ε_s = 0.1%. Use initial guesses of 3.0 and 4.0

OR

Q.2 The velocity v of a falling parachutist is given by

(10)

$$v = \frac{gm}{c} \left[1 - e^{-\left(\frac{c}{m}\right)t} \right]$$

where, g = 9.8 for a parachutist with a drag coefficient c = 14 kg/s, compute the mass m so that the velocity v is 35 m/s at t = 7 sec. Use the False position method to determine m to level of $\varepsilon_s = 0.1\%$.

Q.3 Given the data

(10)

X	5	10	15	20	25	30	35	40	45	50
у	16	25	32	33	38	36	39	40	42	42

Use least square regression to fit a straight line.

OR

Q.3 Employ inverse interpolation using a cubic interpolating polynomial and (10) bisection to determine the value of x that corresponds to f(x) = 0.3 for the following tabulated data

x	1	2	3	4	5	6	7
f(x)	1	0.5	0.3333	0.25	0.2	0.1667	0.1429

SECTION - II

Q.4 a) Apply trapezoidal rule to evaluate

$$I = \int_{-2}^{2} \frac{t}{5+2t} dt$$

b) Quantitatively discuss Newton-Cots integration method

(03)

OR

Q.4 Prove that $I = \frac{4}{3} I(h_2) - \frac{1}{3} I(h_1) \text{ with the help of Romberg integration}$ (10)

Q.5 A mass balance for chemicals in a completely mixed reactor can be written as (10)

$$V_{dt}^{dc} = F - QC - kVC^2$$

where V is volume (10 m³), C is concentration, F is Feed rate (200g/min), Q is flow rate (1 m³/min) and k is reaction rate (0.1 m³/g.min). If at t=0, C_o =0. Find the concentration at t= 2min, taking h=1. Use 4th order Runge-Kutta method

OR

Q.5 Solve the boundary value problem y'' - 64y + 10 = 0; y(0) = y(1) = 0 by finite difference method. Compute the value of y(0.5) and compare with analytical value.

Q.6 Describe the importance of design of experiments (10)

OR

Q.6 Why is it necessary to develop mathematical model for the experimental data? (10) Explain with one example

* * * *