M. Tech.-I (Civil-Hydraulic Engineering) (CBCS – 2015 Course) : SUMMER - 2019

SUBJECT: ADVANCED FLUID MECHANICS

Day: Thursday
Date: 16/05/2019 S-2019-3369

Time: 11.00 AM TO 02.00 PM

Max. Marks: 60

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate **FULL** marks.
- 3) Answers to both the sections should be written in SAME answer book.
- 4) Draw neat labeled diagrams **WHEREVER** necessary.

SECTION-I

- Q.1 a) Define and distinguish between stream line, path line and streak line. When (05) they coincide and do not coincide?
 - If $u = \frac{-y}{b^2}$ and $v = \frac{x}{a^2}$ where a and b are constants. Find the equation of streamline passing through (a, 0)

OR

- Q.1 Derive 3-D continuity equation in cylindrical polar co-ordinates. (10)
- **Q.2** a) For 2-D rotational flow show that $\Delta^2 \Psi = 2\omega$, with usual notations. (05)
 - **b)** Stream function Ψ is given by $\Psi = 8(x^2 + y^2)$. Prove that the flow is (05) rotational. Determine magnitude and direction of velocity at (2, 3).

OR

- Q.2 What are the methods to draw flow net? Describe any one method to draw flow (10) net. What are limitations of flow net?
- Q.3 Starting from Euler's equations of motion along a streamline, obtain (10) Bernoulli's equation. List all the assumptions made and limitations of Bernoulli's equations.

OR

Q.3 Define energy correction and momentum correction factors. Derive the mathematical expression for them. (10)

SECTION-II

- Q.4 a) Derive an expression for velocity distribution for viscous flow through a (05) circular pipe. Also sketch the distribution of velocity and shear stress across a section of pipe.
 - b) Explain different types of hydraulic similarities that must exist between (05) prototype and its model.

OR

- Q.4 a) For a laminar flow in pipe, pressure difference is given by $\Delta p = 32 \frac{\mu UL}{D^2}$, obtain expression for friction factor f.
 - b) Starting from Navier-Stokes equations in Cartesian co-ordinate system, show (05) that for creeping flow, pressure satisfies Laplace equation.

P. T. O.

- Q.5 a) Derive Von Karman's momentum integral equation. (05)
 - b) Define displacement thickness (δ^*) , momentum thickness (θ) and energy (05) thickens (δ^{**}) for boundary layer and write expressions of each.

OR

- Q.5 a) Explain the phenomenon of boundary layer separation and discuss the methods (05) of controlling or delaying separation.
 - b) Draw a neat sketch of boundary layer on a flat plate and give equations for (05) $\frac{\delta}{r}$, c_f and C_f in different regions.
- Q.6 a) Describe characteristics of turbulent flow. (05)
 - b) Derive the expression for velocity distribution in a hydrodynamically rough pipe. (05)

OR

- Q.6 a) State Reynolds rules of averages and obtain the value of \overline{pu} if $p = \overline{p} + p'$ and $u = \overline{u} + u'$. (05)
 - b) Obtain the continuity equation for time averaged velocity component $\overline{u}, \overline{v}, \overline{w}$. (05)

* * * *