M.C.A. Sem - II (Choice Based Credit System 2011 & 2012 Course): SUMMER - 2019

SUBJECT: DISCRETE STRUCTURE – II

Day: Wednesday Date: 24/04/2019

S-2019-2167

Time: 10.00 AM TO 01.00 PM

Max. Marks: 100

N.B.:

- 1) Attempt any **FOUR** questions from Section –I and any **TWO** questions from Section –II.
- 2) Figures to the right indicate **FULL** marks.
- 3) Answers to both the sections should be written in SAME answer book.
- 4) Use of **non-programmable scientific** calculator is allowed.

SECTION-I

Q.1 Explain following problems:

(15)

- i) Konigsberg Bridges problem
- ii) Seating arrangement problem
- iii) Travelling salesman problem

Q.2 State whether the following graphs are isomorphic with justification. (15)

Q.3 Solve the recurrence relation:

(15)

 $a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$

Q.4 Use Kruskal's algorithm to find minimum spanning tree in the following (15) weighted graph.

- Q.5 How many ways are there for eight men and five women to stand in a line so (15) that
 - a) no two women stand next to each other?
 - b) four men are always together?
 - c) all women are always together?

- a) Floyde's Algorithm
- b) Heap sorting algorithm
- c) Generalized permutations
- d) Master theorem regarding recurrence relations

SECTION-II

Q.7 a) In which order does an in order traversal visit the vertices of the ordered rooted (10) tree T as shown below:

- b) Find the coefficient of the terms: (10)
 - i) $x^{7}y^{9}$

ii) x^5y^{11} in the expansion of

 $(2x-3y)^{16}$ by using Binomial expansion theorem.

Q.8 Explain Dijkstra's algorithm. Use it to find shortest path between a and z in the (20) following graph.

- Q.9 a) Explain Huffman's algorithm with suitable example. (10)
 - b) Solve the following travelling salesman problem. (10)

