S.Y.B.SC. SEM – IV (CBCS - 2016 Course) : SUMMER - 2019 SUBJECT : PHYSICS : ELECTRONICS

Day : Saturday Time : 11.00 A.M. To 02.00 P.M.

Date : 20/04/2019 S-2019-0846 Max. Marks : 60

N. B. :

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate **FULL** marks.
- 3) Use of **SCIENTIFIC** calculator is allowed.

Q.1 Answer ANY TWO of the following:

(12)

- a) Explain the action of RS-Flip-flop with diagram and truth table.
- b) Explain the Barkhausen criteria for sustained oscillations.
- c) With necessary diagram explain the output characteristics of transistor in CE-mode.

Q.2 Answer ANY TWO of the following:

(12)

- a) i) Give the statement for Maximum power Transfer theorem.
 - ii) Verify maximum power transfer theorem for the following circuit.

- **b)** Convert the following:
 - i) $(64)_{10} = (?)_8$ ii) $(76)_{10} = (?)_{16}$ iii) $(4BAC)_{16} = (?)_2$
- c) Explain the action of SMPS with duty cycle.

Q.3 Answer ANY TWO of the following:

(12)

- a) Draw symbols for UJT and explain its I-V characteristics.
- b) With neat diagram explain the action of full wave rectifier with necessary diagram.
- c) Explain the action of RC coupled amplifier with necessary diagram.

Q.4 Answer ANY THREE of the following:

(12)

a) In the following circuit diagram if $V_{cc} = 6V$ and $R_c = 3k \Omega$, draw d.c. load line. What will be Q- point if zero signal base current is 20 μ A and $\beta = 50$?

- b) Give the statement for following:
 - i) Thevenin's theorem
- ii) Nortan's theorem
- c) Explain the following gates with symbol, Boolean expression and truth table
 - i) AND ii) EXOR
- d) Explain the action of transistor as a switch.

Q.5 Answer ANY FOUR of the following:

(12)

- a) State any three Boolean laws.
- b) Explain the three pin regulator IC 7905.
- c) State and explain De-Morgans second theorem.
- d) i) Using 1's complement method, subtract (01101)₂ from (11011)₂
 - ii) Using 2's complement method, subtract (101)₂ from (111)₂
- e) Define the following: i) load regulation ii) Line regulation
- f) Find α , I_B and I_E . Given $I_C = 10$ mA and $\beta = 200$