M. SC. (Analytical Chemistry) / M. SC. (Organic Chemistry) / M. SC. (Inorganic Chemistry) Sem-II (Choice Based Credit & Grade System): **SUMMER - 2019**

SUBJECT: PHYSICAL CHEMISTRY – II

Time: 03.00 PM TO 06.00 PM Day : Tuesday

Max. Marks: 60 Date : 09/04/2019 S-2019-1172

N.B.:

All questions are **COMPULSORY**. 1)

Figures to the right indicate FULL marks. 2)

Draw neat and labeled diagrams WHEREVER necessary. 3)

Use of logarithmic tables / calculator is ALLOWED. 4)

Graph papers will be provided. 5)

Answers to both the sections should be written in **SEPARATE** answer books. **6)**

	Physico-Chemical Constants	
1.	Avogadro Number	$N = 6.022 \times 10^{23} \text{mol}^{-1}$
2.	Boltzmann Constant	$K = 1.38 \times 10^{-16} \text{ erg K}^{-1} \text{ molecule}^{-1}$ = $1.38 \times 10^{-23} \text{ J K}^{-1} \text{ molecule}^{-1}$
3.	Planck Constant	$H = 6.626 \times 10^{-27} \text{ erg s}$ $= 6.626 \times 10^{-34} \text{ J s}$
4.	Electronic Charge	$E = 4.803 \times 10^{-10} \text{ esu}$ $= 1.602 \times 10^{-19} \text{ C}$
5.	1 eV	= $23.06 l cal mol^{-1}$ = $1.602 \times 10^{-12} erg$ = $8065.5 cm^{-1}$
6.	Gas Constant	$R = 8.314 \times 10^{7} \text{ eg K}^{-1} \text{ mol}^{-1}$ $= 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 1.987 \text{ cal K}^{-1} \text{ mol}^{-1}$
7.	Faraday Constant	$F = 96487 \text{ C equiv}^{-1}$
8.	Speed of light	$c = 2.997 \times 10^{10} \text{ cm s}^{-1}$ = $2.997 \times 10^8 \text{ m s}^{-1}$
9.	1 cal	$= 4.184 \times 10^7 \text{ erg}$ = 4.184 J
10.	1 amu	$= 1.673 \times 10^{-27} \text{kg}$
11.	Bohr magneton	$\beta_e = 9.274 \times 10^{\text{-24}} \text{J T}^{\text{-1}}$
12.	Nuclear magneton	$\beta_n = 5.051 \times 10^{\text{-}27} \text{ J T}^{\text{-}1}$
13.	Mass of an electron	$m_e = 9.11 \times 10^{-31} \text{ kg}$
14.	Mass of Proton	$1.672 \times 10^{-27} \mathrm{kg}$

Attempt ANY THREE of the following:

- [15]
- a) What is predissociation? Give diagrammatic illustration of the appearance of predissociation during transitions.
- b) Discuss the classical theory of Raman effect.
- c) Draw and write about the allowed rotational energies of rigid diatomic molecule. Give its selection rule.
- d) Explain the vibration rotation spectrum of CO molecule.
- e) What is the principle of electron spin resonance spectroscopy? Explain 'g' factor involved in it.

Q.2 A) Attempt ANY TWO of the following:

[10]

- a) What do you understand by Born Oppenheimer Approximation of electronic spectroscopy of molecules? How vibrational coarse structure is observed for electronic spectroscopy?
- b) Discuss the effect of isotopic substitution in case of rotation spectrum of a rigid diatomic molecule.
- c) Explain the principle used in Mössbauer spectroscopy.
- B) Solve ANY ONE of the following:

[05]

- a) A sample was excited by the 4358 Å line of mercury. A Raman line was observed at 4447 Å. Calculate Raman shift in cm⁻¹.
- b) The value of \overline{W}_e and x_e in the ground state $(^3\pi_{\mu})$ and a particular excited state $(^3\pi_{\rm g})$ of C_2 are

	\overline{W}_e	x_e
G.S.	16141.4 cm ⁻¹	7.11×10^{-3}
E.S.	1788.2 cm ⁻¹	9.19×10^{-3}

Find number of vibrational energy levels below the dissociation limit and hence the dissociation energy of C_2 in both states.

SECTION - II

Q.3 Attempt ANY THREE of the following:

[15]

- a) Discuss the linear, mass, atomic and electronic absorption coefficients.
- b) What are Scavengers? How were they used in the radiolysis of water?
- c) Explain direct isotope dilution analysis.
- d) Explain in detail "Neutron Activation Analysis".
- e) Explain the Cerenkov radiation phenomenon observed in the charged particles.

Q.4 A) Attempt ANY TWO of the following:

[10]

- a) Discuss the effect of pH and LET on the radical and molecular yields of water radiolysis.
- b) What is hydrated electron? Give the structure and properties of hydrated electron.
- c) Discuss the working of Fricke dosimeter.

B) Solve ANY ONE of the following:

[05]

- a) A ruby weighing 0.5g was irradiated in a neutron flux of 10^{12} n cm⁻² s⁻¹ for exactly 24 hrs and ⁵¹Cr activity ($\tau = 27.7$ days) counted immediately thereafter. It was found to give 35,000 c s⁻¹. Given:
 - i) σ for ⁵⁰Cr = 15.9 b ii) counting efficiency = 10%
 - iii) ⁵⁰Cr content of natural chromium = 4.35%. Find the chromium content of the ruby.
- **b)** Calculate the $\overline{Z/A}$ values for:
 - i) acetic acid
- ii) Carbon tetrachloride